ECE 363 SAMPLE EXAM #1 (F19)

NAME:

4 problems for 100 pts

Problem #1: LED Constant Current Driver (25 pts)

You are asked to design a current source to operate three power LEDs. You decide to use a zener diode with a Darlington transistor. The design specs are:

- LED current = 0.75 A (+/- 5% is OK)
- LED forward voltage = 3.1V 3.4V
- Darlington is either a BC517 or MJE800
- V_{CC} is either 12, 15, 18, or 21V
- All resistors are standard 5% values.
- (a) Perform a "quick" analysis to choose V_{CC} . Show all work.
- (b) Perform a "quick" analysis to choose Q1. You must explain why you chose one transistor and not the other one. If Q1 needs a heat sink, you must compute the max θ_{SA} (assume $\theta_{CS} = 0.5^{\circ}$ C/W).
- (c) Choose R_E and R_S based on "typical" Q1 parameters.

Problem #2: Amplifier Output Error (25 pts)

Consider an optical communication link for an infrared remote control. A transmitter sends a train of infrared pulses. The receiver converts the optical pulses into voltage pulses.

Suppose the receiver output V_{REC} consists of 50% duty cycle pulses with a 20 mV amplitude and 40 kHz frequency. These tiny pulses are sent to an inverting amplifier built with an LF356 op amp.

a) Is the amplifier output limited by small-signal bandwidth or slew rate? Show all work!

- b) Compute the worst-case output error voltage (assume $T_A = 25^{\circ}C$). Show all work!
- c) Assuming worst-case output error voltage, sketch both V_{REC} and V_{OUT} over a 50 us interval. Label important features!

Problem #3: Digital-to-Analog Converter (25 pts)

Recall binary numbers from ECE 118. A 3-bit binary number ($B_2 B_1 B_0$) is equal to $B_2^* 2^2 + B_1^* 2^1 + B_0^* 2^0$. For example, (110) is equal to 1.4 + 1.2 + 0.1 = 6. As another example, (011) is equal to 0.4 + 1.2 + 1.1 = 3.

How do we use hardware to convert a binary number into decimal? The digital outputs from a microcontroller are typically 5V logic. Therefore, a binary "1" is really +5V, while a binary "0" is really 0V.

A simple 3-bit digital-to-analog converter (DAC) is shown below. The input voltages V_2 , V_1 , V_0 come from a microcontroller. The output V_{OUT} is an "integer" from 0 to 7V. For example, the binary number (110) should produce Vout = 6V, while the binary number (011) should produce Vout = 3V.

(a) Use the Golden Rules to derive an expression for V_{OUT} in terms of V₂, V₁, and V₀. Show all work!

Hint: Think about V_{OUT} in terms of Va, and then Va in terms of the inputs.

- (b) Suppose $R_A = 40$ kohm. Determine the ideal values for R_2 , R_1 , and R_0 . Show all work!
- (c) Suppose you are using LF356 op amps, and assume the final output is connected to a load R_L ≥ 10 kohm. Would you use Vcc = 8V for this circuit? How about Vcc = 9V? Show all work!

Problem #4: Push-Pull Current Booster (25 pts)

Design a voltage amplifier to drive a 6V DC motor with a max power consumption of 1.2W. The motor voltage must not exceed 6V by more than 5%. The input signal can swing between -0.2V and 0.2V. The design constraints are the following:

- Use an LF356 op amp.
- Q1 is either a 2N4401 or TIP31. NOTE: The pnp versions are the 2N4403 and TIP32.
- V_{CC} is either 4.5, 6, 9, or 12V
- Input impedance $Z_{IN} \ge 10$ kohm
- All resistors are 5% standard values.
- (a) Perform a "quick" analysis to choose V_{CC}. Show all calculations!

- (b) Perform a "quick" analysis to choose Q1. You must explain why you chose one transistor and not the other one. If Q1 needs a heat sink, you must compute the max θ_{SA} (assume $\theta_{CS} = 0.5^{\circ}$ C/W).
- (c) Show that the op amp can provide the required output voltage and current, even under worst-case transistor conditions.
- (d) Choose R1 and R2. Show all work!

		Standard	Resistor	Values (±5	%)	
1.0	10	100	1.0K	10K	100K	1.0M
1.1	11	110	1.1K	11K	110K	1.1M
1.2	12	120	1.2K	12K	120K	1.2M
1.3	13	130	1.3K	13K	130K	1.3M
1.5	15	150	1.5K	15K	150K	1.5M
1.6	16	160	1.6K	16K	160K	1.6M
1.8	18	180	1.8K	18K	180K	1.8M
2.0	20	200	2.0K	20K	200K	2.0M
2.2	22	220	2.2K	22K	220K	2.2M
2.4	24	240	2.4K	24K	240K	2.4M
2.7	27	270	2.7K	27K	270K	2.7M
3.0	30	300	3.0K	30K	300K	3.0M
3.3	33	330	3.3K	33K	330K	3.3M
3.6	36	360	3.6K	36K	360K	3.6M
3.9	39	390	3.9K	39K	390K	3.9M
4.3	43	430	4.3K	43K	430K	4.3M
4.7	47	470	4.7K	47K	470K	4.7M
5.1	51	510	5.1K	51K	510K	5.1M
5.6	56	560	5.6K	56K	560K	5.6M
6.2	62	620	6.2K	62K	620K	6.2M
6.8	68	680	6.8K	68K	680K	6.8M
7.5	75	750	7.5K	75K	750K	7.5M
8.2	82	820	8.2K	82K	820K	8.2M
9.1	91	910	9.1K	91K	910K	9.1M

		0%)	alues (±1	pacitor V	andard Ca	St	
100	10µF	1.0µF	.10µF	.010µF	1000pF	100pF	10pF
7		1.2µF	.12µF	.012µF	1200pF	120pF	12pF
] 150	15 μF	1.5µF	.15µF	.015µF	1500pF	150pF	15pF
7		1.8µF	.18µF	.018µF	1800pF	180pF	18pF
220	22µF	2.2µF	.22µF	.022µF	2200pF	220pF	22pF
7		2.7µF	.27µF	.027µF	2700pF	270pF	27pF
330	33µF	3.3µF	.33µF	.033µF	3300pF	330pF	33pF
7		3.9µF	.39µF	.039µF	3900pF	390pF	39pF
470	47uF	4.7µF	.47µF	.047µF	4700pF	470pF	47pF
7		5.6µF	.56µF	.056µF	5600pF	560pF	56pF
680	68 µF	6.8µF	.68µF	.068µF	6800pF	680pF	68pF
7		8.2µF	.82µF	.082µF	8200pF	820pF	82pF

ON Semiconductor®

BC517 NPN Darlington Transistor

Features

- This device is designed for applications requiring extremely high current gain at currents to 1.0 A.
- Sourced from process 05.

Ordering Information

Part Number	Part Number Top Mark		Packing Method		
BC517-D74Z	BC517	TO-92 3L (Bent Lead)	Ammo		

Absolute Maximum Ratings^{(1), (2)}

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	30	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	10	V
۱ _C	Collector Current - Continuous	1.2	А
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Notes:

- 1. These ratings are based on a maximum junction temperature of 150°C.
- 2. These are steady-state limits. ON Semiconductor should be consulted on applications involving pulsed or lowduty-cycle operations.

Thermal Characteristics⁽³⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Value	Unit
р	Total Device Dissipation, $T_A = 25^{\circ}C$	625	mW
PD	Derate Above 25°C	5.0	mW/°C
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case	83.3	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	200	°C/W

Note:

3. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

Electrical Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 2.0 \text{ mA}, I_{\rm B} = 0$	30			V
V _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = 10 \ \mu A, \ I_{E} = 0$	40			V
V _{EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 100 \text{ nA}, I_{C} = 0$	10			V
I _{CBO}	Collector Cut-Off Current	$V_{CB} = 30 \text{ V}, I_{E} = 0$			100	nA
h _{FE}	DC Current Gain	$V_{CE} = 2 \text{ V}, \text{ I}_{C} = 20 \text{ mA}$	30,000			
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = 100 mA, I _B = 0.1 mA			1	V
V _{BE} (on)	Base-Emitter On Voltage	I_{C} = 10 mA, V_{CE} = 5.0 V			1.4	V

MJE700G, MJE702G, MJE703G (PNP), MJE800G, MJE802G, MJE803G (NPN)

Plastic Darlington Complementary Silicon Power Transistors

These devices are designed for general-purpose amplifier and low-speed switching applications.

Features

• High DC Current Gain – $h_{FE} = 2000$ (Typ) @ I_C

= 2.0 Adc

- Monolithic Construction with Built-in Base-Emitter Resistors to Limit Leakage – Multiplication
- Choice of Packages MJE700 and MJE800 Series
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage MJE700G, MJE800G MJE702G, MJE703G, MJE802G, MJE803G	V _{CEO}	60 80	Vdc
Collector–Base Voltage MJE700G, MJE800G MJE702G, MJE703G, MJE802G, MJE803G	V _{CB}	60 80	Vdc
Emitter-Base Voltage	V_{EB}	5.0	Vdc
Collector Current	Ι _C	4.0	Adc
Base Current	Ι _Β	0.1	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	40 0.32	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	3.12	°C/W
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	83.3	°C/W

ON Semiconductor®

http://onsemi.com

4.0 AMPERE DARLINGTON POWER TRANSISTORS COMPLEMENTARY SILICON 40 WATT

MARKING DIAGRAM

Υ	= Year
WW	= Work Week
JEx0y	= Device Code
	x = 7 or 8
	y = 0, 2, or 3
G	= Pb-Free Package

ORDERING INFORMATION

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MJE700G, MJE702G, MJE703G (PNP), MJE800G, MJE802G, MJE803G (NPN)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•		•	•
Collector–Emitter Breakdown Voltage (Note 1) ($I_C = 50 \text{ mAdc}, I_B = 0$) MJE700G, MJE800G MJE702G, MJE703G, MJE802G, MJE803G	V _{(BR)CEO}	60 80		Vdc
	ICEO		100 100	μAdc
	Ісво		100 500	μAdc
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	-	2.0	mAdc
ON CHARACTERISTICS				
$ \begin{array}{l} \mbox{DC Current Gain (Note 1)} \\ (I_C = 1.5 \mbox{ Adc, } V_{CE} = 3.0 \mbox{ Vdc}) \\ \mbox{MJE700G, } \mbox{MJE702G, } \mbox{MJE800G, } \mbox{MJE802G} \\ (I_C = 2.0 \mbox{ Adc, } V_{CE} = 3.0 \mbox{ Vdc}) \\ \mbox{MJE703G, } \mbox{MJE803G} \\ (I_C = 4.0 \mbox{ Adc, } V_{CE} = 3.0 \mbox{ Vdc}) \\ \mbox{All devices} \end{array} $	h _{FE}	750 750 100		_
Collector–Emitter Saturation Voltage (Note 1) ($I_c = 1.5 \text{ Adc}, I_B = 30 \text{ mAdc}$) MJE700G, MJE702G, MJE800G, MJE802G ($I_c = 2.0 \text{ Adc}, I_B = 40 \text{ mAdc}$) MJE703G, MJE803G	V _{CE(sat)}	-	2.5	Vdc
$(I_{C} = 4.0 \text{ Adc}, I_{B} = 40 \text{ mAdc})$ All devices		-	3.0	
Base-Emitter On Voltage (Note 1) ($I_C = 1.5 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$) MJE700G, MJE702G, MJE800G, MJE802G ($I_C = 2.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$) MJE703G, MJE803G	V _{BE(on)}		2.5	Vdc
$(I_{C} = 4.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc})$ All devices		_	3.0	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

DYNAMIC CHARACTERISTICS

Small–Signal Current Gain	h _{fe}			-
(I _C = 1.5 Adc, V _{CE} = 3.0 Vdc, f = 1.0 MHz)		1.0	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

MJE700G, MJE702G, MJE703G (PNP), MJE800G, MJE802G, MJE803G (NPN)

DC Electrical Characteristics

Symbol	Parameter	Conditions		LF155/6		LF356B			LF355/6/7			Units
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
V _{OS}	Input Offset Voltage	R _S =50Ω, T _A =25°C		3	5		3	5		3	10	mV
		Over Temperature			7			6.5			13	mV
$\Delta V_{OS} / \Delta T$	Average TC of Input Offset Voltage	R _S =50Ω		5			5			5		µV/°C
$\Delta TC/\Delta V_{OS}$	Change in Average TC with V_{OS} Adjust	R _S =50Ω, ⁽²⁾		0.5			0.5			0.5		µV/°C per mV
I _{OS}	Input Offset Current	T _J =25°C, ⁽¹⁾ ⁽³⁾		3	20		3	20		3	50	pА
		T _J ≤T _{HIGH}			20			1			2	nA
I _B	Input Bias Current	T _J =25°C, ⁽¹⁾ ⁽³⁾		30	100		30	100		30	200	pА
		T _J ≤T _{HIGH}			50			5			8	nA
R _{IN}	Input Resistance	T _J =25°C		10 ¹²			10 ¹²			10 ¹²		Ω
A _{VOL}	Large Signal Voltage	$V_S=\pm 15V, T_A=25^{\circ}C$	50	200		50	200		25	200		V/mV
	Gain	$V_0=\pm 10V, R_L=2k$										
		Over Temperature	25			25			15			V/mV
Vo	Output Voltage Swing	V _S =±15V, R _L =10k	±12	±13		±12	±13		±12	±13		V
		V _S =±15V, R _L =2k	±10	±12		±10	±12		±10	±12		V
V _{CM}	Input Common-Mode	V _S =±15V	. 4.4	+15.1		. 4 4	±15.1		. 10	+15.1		V
	Voltage Range		±11	-12		±11	-12		+10	-12		V
CMRR	Common-Mode Rejection Ratio		85	100		85	100		80	100		dB
PSRR	Supply Voltage Rejection Ratio	(4)	85	100		85	100		80	100		dB

(1) Unless otherwise stated, these test conditions apply:

	LF155/156	LF256/257	LF356B	LF355/6/7
Supply Voltage, V_S	$\pm 15V \le V_S \le \pm 20V$	$\pm 15V \le V_S \le \pm 20V$	$\pm 15V \le V_S \pm 20V$	$V_{S}=\pm 15V$
T _A	−55°C ≤ T _A ≤ +125°C	−25°C ≤ T _A ≤ +85°C	$0^{\circ}C \le T_A \le +70^{\circ}C$	$0^{\circ}C \le T_{A} \le +70^{\circ}C$
T _{HIGH}	+125°C	+85°C	+70°C	+70°C

and V_{OS} , I_B and I_{OS} are measured at $V_{CM} = 0$.

(2) The Temperature Coefficient of the adjusted input offset voltage changes only a small amount (0.5µV/°C typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.

(3) The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, T_J. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. T_J = T_A + θ_{JA} Pd where θ_{JA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

(4) Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

DC Electrical Characteristics

 $T_A = T_J = 25^{\circ}C, V_S = \pm 15V$

4

Deremeter	LF	155	LF355		LF156/256/257/356B		LF356		LF357		Unito
Parameter	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Units
Supply Current	2	4	2	4	5	7	5	10	5	10	mA

www.ti.com

SNOSBHOC-MAY 2000-REVISED MARCH 2013

www.ti.com

AC Electrical Characteristics

 $T_A = T_J = 25^{\circ}C, V_S = \pm 15V$

Symbol	Parameter	Conditions	LF155/355	LF156/256/ 356B	LF156/256/356/ LF356B	LF257/357	Units
			Тур	Min	Тур	Тур	-
SR	Slew Rate	LF155/6: A _V =1,	5	7.5	12		V/µs
		LF357: A _V =5				50	V/µs
GBW	Gain Bandwidth Product		2.5		5	20	MHz
t _s	Settling Time to 0.01%	(1)	4		1.5	1.5	μs
en	Equivalent Input Noise	R _S =100Ω					
	Voltage	f=100 Hz	25		15	15	nV/√Hz
		f=1000 Hz	20		12	12	nV/√Hz
i _n	Equivalent Input Current	f=100 Hz	0.01		0.01	0.01	pA/√Hz
	Noise	f=1000 Hz	0.01		0.01	0.01	pA/√Hz
C _{IN}	Input Capacitance		3		3	3	pF

(1) Settling time is defined here, for a unity gain inverter connection using 2 kΩ resistors for the LF155/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10V step input is applied to the inverter. For the LF357, A_V = -5, the feedback resistor from output to input is 2kΩ and the output step is 10V (See Settling Time Test Circuit).

SNOSBHOC - MAY 2000 - REVISED MARCH 2013

Copyright © 2000-2013, Texas Instruments Incorporated

Texas

Instruments

2N4401

General Purpose Transistors

NPN Silicon

Features

• Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector – Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

2N4401 = Device Code A = Assembly Location Y = Year WW = Work Week • = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

2N4401

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

	Charact	eristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS						•
Collector-Emitter Breakdowr	n Voltage (Note	I) (I _C = 1.0 mAdc, I _B = 0)	V _{(BR)CEO}	40	-	Vdc
Collector-Base Breakdown	/oltage	(I _C = 0.1 mAdc, I _E = 0)	V _{(BR)CBO}	60	-	Vdc
Emitter-Base Breakdown Vo	ltage	(I _E = 0.1 mAdc, I _C = 0)	V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current		$(V_{CE} = 35 \text{ Vdc}, \text{ V}_{EB} = 0.4 \text{ Vdc})$	I _{BEV}	-	0.1	μAdc
Collector Cutoff Current		$(V_{CE} = 35 \text{ Vdc}, \text{ V}_{EB} = 0.4 \text{ Vdc})$	ICEX	-	0.1	μAdc
ON CHARACTERISTICS (No	ote 1)					
DC Current Gain			h _{FE}	20 40 80 100 40	- - 300 -	-
Collector-Emitter Saturation	Voltage	$\begin{array}{l} (I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}) \\ (I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}) \end{array}$	V _{CE(sat)}		0.4 0.75	Vdc
Base – Emitter Saturation Voltage		(I_C = 150 mAdc, I_B = 15 mAdc) (I_C = 500 mAdc, I_B = 50 mAdc)	V _{BE(sat)}	0.75	0.95 1.2	Vdc
SMALL-SIGNAL CHARACT	ERISTICS					•
Current-Gain - Bandwidth P	roduct (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	f _T	250	-	MHz
Collector-Base Capacitance		$(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cb}	-	6.5	pF
Emitter-Base Capacitance		$(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$	C _{eb}	-	30	pF
Input Impedance		(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{ie}	1.0	15	kΩ
Voltage Feedback Ratio		(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}	0.1	8.0	X 10 ⁻⁴
Small–Signal Current Gain (I _C		(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	40	500	-
Output Admittance (I _C = 1.		$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{oe}	1.0	30	μmhos
SWITCHING CHARACTERIS	STICS					
Delay Time	(V _{CC} = 30 Vdc,	V _{BE} = 2.0 Vdc,	t _d	-	15	ns
Rise Time	$I_{\rm C}$ = 150 mAdc,	I _{B1} = 15 mAdc)	t _r	-	20	ns
Storage Time	(V _{CC} = 30 Vdc,	I _C = 150 mAdc,	ts	-	225	ns

1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

 $I_{B1} = I_{B2} = 15 \text{ mAdc}$)

ORDERING INFORMATION

Fall Time

Device	Package	Shipping [†]
2N4401	TO-92	5000 Units / Bulk
2N4401G	TO-92 (Pb-Free)	5000 Units / Bulk
2N4401RLRA	TO-92	2000 / Tape & Reel
2N4401RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N4401RLRMG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box
2N4401RLRP	TO-92	2000 / Tape & Ammo Box
2N4401RLRPG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box

tf

_

30

ns

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

2N4401

TIP31, TIP31A, TIP31B, TIP31C, (NPN), TIP32, TIP32A, TIP32B, TIP32C, (PNP)

Complementary Silicon Plastic Power Transistors

Designed for use in general purpose amplifier and switching applications.

Features

• Collector–Emitter Saturation Voltage –

 $V_{CE(sat)} = 1.2 \text{ Vdc} (Max) @ I_C = 3.0 \text{ Adc}$

- Collector-Emitter Sustaining Voltage -
 - V_{CEO(sus)} = 40 Vdc (Min) TIP31, TIP32
 - = 60 Vdc (Min) TIP31A, TIP32A
 - = 80 Vdc (Min) TIP31B, TIP32B
 - = 100 Vdc (Min) TIP31C, TIP32C
- High Current Gain Bandwidth Product
 - $f_{T} = 3.0 \text{ MHz} (\text{Min}) @ I_{C} = 500 \text{ mAdc}$
- Compact TO-220 AB Package
- Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector – Emitter Voltag	e TIP31, TIP32 TIP31A, TIP32A TIP31B, TIP32B TIP31C, TIP32C	V _{CEO}	40 60 80 100	Vdc
Collector-Base Voltage	TIP31, TIP32 TIP31A, TIP32A TIP31B, TIP32B TIP31C, TIP32C	V _{CB}	40 60 80 100	Vdc
Emitter-Base Voltage		V _{EB}	5.0	Vdc
Collector Current	Continuous Peak	Ι _C	3.0 5.0	Adc
Base Current		Ι _Β	1.0	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C		P _D	40 0.32	W W/°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C		P _D	2.0 0.016	W W/°C
Unclamped Inductive Load Energy (Note 1)		E	32	mJ
Operating and Storage Ju Temperature Range	inction	T _J , T _{stg}	-65 to + 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_{C} = 1.8 A, L = 20 mH, P.R.F. = 10 Hz, V_{CC} = 10 V, R_{BE} = 100 Ω

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

http://onsemi.com

3 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 40–60–80–100 VOLTS, 40 WATTS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

TIP31, TIP31A, TIP31B, TIP31C, (NPN), TIP32, TIP32A, TIP32B, TIP32C, (PNP)

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	62.5	°C/W
Thermal Resistance, Junction-to-Case	R _{θJC}	3.125	°C/W

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Note 2)	TIP31, TIP32	V _{CEO(sus)}	40	-	Vdc
$(I_{\rm C} = 30 \text{ mAdc}, I_{\rm B} = 0)$	TIP31A, TIP32A		60	-	
	TIP31B, TIP32B		80	-	
	TIP31C, TIP32C		100	-	
Collector Cutoff Current (V_{CE} = 30 Vdc, I_B = 0) T	TP31, TIP32, TIP31A, TIP32A	I _{CEO}	-	0.3	mAdc
(V _{CE} = 60 Vdc, I _B = 0) TIP3	31B, TIP31C, TIP32B, TIP32C		-	0.3	
Collector Cutoff Current		I _{CES}			μAdc
(V _{CE} = 40 Vdc, V _{EB} = 0)	TIP31, TIP32		-	200	
(V _{CE} = 60 Vdc, V _{EB} = 0)	TIP31A, TIP32A		-	200	
(V _{CE} = 80 Vdc, V _{EB} = 0)	TIP31B, TIP32B		-	200	
(V _{CE} = 100 Vdc, V _{EB} = 0)	TIP31C, TIP32C		-	200	
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_C = 0$)		I _{EBO}	-	1.0	mAdc
ON CHARACTERISTICS (Note 2)					
DC Current Gain (I _C = 1.0 Adc, V _{CE} = 4.0 Vdc)		h _{FF}	25	_	_
$(I_{C} = 3.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$			10	50	
Collector-Emitter Saturation Voltage ($I_C = 3.0 \text{ Adc}, I_B = 375$	5 mAdc)	V _{CE(sat)}	_	1.2	Vdc
Base-Emitter On Voltage (I _C = 3.0 Adc, V _{CE} = 4.0 Vdc)		V _{BE(on)}	-	1.8	Vdc
DYNAMIC CHARACTERISTICS					
Current–Gain – Bandwidth Product (I_C = 500 mAdc, V_{CE} =	10 Vdc, f _{test} = 1.0 MHz)	f _T	3.0	-	MHz
Small–Signal Current Gain (I_C = 0.5 Adc, V_{CE} = 10 Vdc, f =	= 1.0 kHz)	h _{fe}	20	-	-

2. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

TIP31, TIP31A, TIP31B, TIP31C, (NPN), TIP32, TIP32A, TIP32B, TIP32C, (PNP)

