A. Passive Filters

1) Consider the "tank circuit" in Fig. 1, where the inductor L and capacitor C are in parallel.
(a) Sketch the circuit at $\mathrm{DC}(\mathrm{f}=0)$ and a separate sketch at really high frequencies ($\mathrm{f} \rightarrow \infty$).
(b) What is $V_{\text {out }} / V_{\text {IN }}$ at these two frequencies?

Fig. 1: A "tank circuit" consists of a parallel inductor and capacitor.
(c) Derive an expression for the frequency where the parallel impedance of L and C becomes infinite! This resonant frequency corresponds to energy "sloshing" back and forth between L and C. The trapped energy means nothing gets through, which is the same as infinite impedance.
(d) Based on your answers to (a) - (c), sketch the magnitude of the frequency response on a linear scale. You do NOT need to calculate anything! Make sure to label your axes. What kind of filter is this?

B. Active Filters

2) Consider the Sallen-and-Key high-pass filter shown in Fig. 2.
(a) Use the Golden Rules to show that:

$$
\frac{V_{\text {OUT }}}{V_{I N}}=\frac{-\omega^{2} R_{1} R_{2} C^{2}}{1+j 2 \omega R_{2} C-\omega^{2} R_{1} R_{2} C^{2}}
$$

Hint \#1: Since the op amp is basically a

$$
\text { buffer, } \mathrm{V}_{+}=\mathrm{V}_{-}=\mathrm{V}_{\text {OUT. }}
$$

Fig. 2: 2nd order Sallen-and-Key high-pass active filter.

Hint \#2: Use KCL at node "A" to obtain $V_{\text {out }}$ in terms of V_{IN} and V_{A}.

Hint \#3: What is V_{A} ? V_{A} and V_{+}form a voltage divider, so you can obtain V_{A} in terms of $\mathrm{V}_{\text {out. }}$.
(b) Determine expressions for ω_{P} and Q so that the filter gain from Part (a) has the following form:

$$
\frac{V_{\text {OUT }}}{V_{I N}}=\frac{-\omega^{2} / \omega_{P}^{2}}{1+\frac{j \omega}{\omega_{P} Q}-\omega^{2} / \omega_{P}^{2}}
$$

(c) To make a Butterworth filter, we set $\mathrm{Q}=1 / \operatorname{sqrt}(2)$ and $\mathrm{f}_{\mathrm{C}}=\omega_{\mathrm{P}} / 2 \pi$. In this case, show that:

$$
\left|\frac{V_{\text {OUT }}}{V_{I N}}\right|=\frac{\left(\frac{f}{f_{C}}\right)^{2}}{\sqrt{1+\left(\frac{f}{f_{C}}\right)^{4}}} \quad \text { and } \quad f_{C}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C}}
$$

3) Design a $2^{\text {nd }}$ order Butterworth high-pass filter with a "gain" of - 50 dB at 500 Hz . Some design constraints:

- Use standard 10% capacitors (see course website). Typical values are between 100 pF and 0.1 uF .
- Use standard 5% resistors. Typical values are between 1 kohm and 1 Mohm.
- If you want, you can combine two resistors in series to make a resistor of twice the value. Or you can combine two resistors in parallel to make a resistor of half the value.
(a) Based on your chosen components, show that your filter gain is within $+/-1 \mathrm{~dB}$ of the desired value.
(b) Sketch the filter gain (in decibels) of your circuit. The frequency axis should be on a \log scale from 50 Hz to 500 kHz . For example, your tick marks should show $50 \mathrm{~Hz}, 500 \mathrm{~Hz}, 5 \mathrm{kHz}, 50 \mathrm{kHz}$, and 500 kHz . Clearly label your axes and especially the filter gain at 500 Hz , the value of f_{C}, and the filter gain at f_{C}.
(c) Sketch your circuit. If you use two resistors in parallel or series, your diagram MUST show this!

4) Higher-order filters produce sharper frequency roll-offs, which is usually a desirable property. They are typically built by cascading lower-order filters. HOWEVER, the lower-order filters are not identical!

Consider a fourth-order Butterworth low-pass filter with $f_{C}=20 \mathrm{kHz}$. This requires two second-order filters with $\mathrm{f}_{\mathrm{C}}=$ 20 kHz but DIFFERENT values of \mathbf{Q} ! According to Table 19-3 in the textbook, the first stage should have $\mathrm{Q}=0.54$ while the second stage should have $\mathrm{Q}=1.31$. Some design constraints:

- Use standard 10% capacitors (see course website). Typical values are between 100 pF and 0.1 uF .
- Use standard 5% resistors. Typical values are between 1 kohm and 1 Mohm.
(a) Design the first stage, and show that its actual f_{C} (based on your components) is within $+/-5 \%$ of 20 kHz .
(b) Repeat for the second stage.

C. Negative Feedback

5) Consider the non-inverting amplifier shown to the right. The op amp has an open-loop gain of $\left|\mathrm{A}_{\mathrm{o}}\right|=106 \mathrm{~dB}$, differential input resistance $R_{i}=200$ kohm, and output impedance $R_{O}=25$ ohm. Compute the following:
(a) Feedback factor β.
(b) Loop gain $\mathrm{A}_{\circ} \beta$.
(c) Closed loop gain G.
(d) Input impedance $Z_{\text {IN }}$. Hint: Should be around 1.3 Gohm.
(e) Output impedance $Z_{\text {Out }}$.

6) You need to design an amplifier with a closed-loop gain of 100 (e.g. 40 dB) that is accurate to within 1% (e.g. $\Delta \mathrm{G} / \mathrm{G}=$ 1%). You have available some amplifiers with an open-loop gain $\mathrm{A}_{\mathrm{o}}=66 \mathrm{~dB}$ that are accurate to within $+/-3 \mathrm{~dB}$.
(a) Based on the nominal gain A_{o}, what is the necessary β for a single-stage configuration? Remember to compute β to FIVE decimal places (e.g. $\beta=0.12345$).
(b) Based on the variation of A_{0}, what is the closed-loop gain accuracy of this single-stage configuration? Remember to compute G to THREE decimal places (e.g. $G=10.123$).

- Hint: You should get $\Delta \mathrm{G} / \mathrm{G}=3.5 \%$.
(c) Assuming two stages with nominal gain A_{0}, what is the necessary β to produce $\mathrm{G}=40 \mathrm{~dB}$?
(d) Based on the variation of A_{O}, what is the closed-loop gain accuracy for this double-stage configuration?
- Hint: You should get $\Delta \mathrm{G} / \mathrm{G}=0.7 \%$.

7) You are asked to design an amplifier with a gain of $\mathrm{G}=30($ not 30 dB$)$ and $+/-1 \%$ variation (e.g. $\mathrm{G}_{\text {MIN }}=29.7$). Due to space requirements on the circuit board, you can only use one stage. Your electronics stockpile has amplifiers with an open-loop gain A_{0} that varies by a factor of 10 (e.g. $\mathrm{A}_{0, \mathrm{MAX}}=10 \mathrm{~A}_{0, \mathrm{MIN}}$) over temperature and time.
(a) What is the lowest open-loop gain $\mathrm{A}_{0, \mathrm{MIN}}$ needed for your application?

Hint \#1: $G_{\text {min }}=29.7$ is due to $A_{0, \text { Min. }}$. Similarly, $G_{\text {max }}$ is due to $A_{0, \text { MAX }}=10 A_{0, \text { min. }}$. Use the expressions for $\mathrm{G}_{\text {MIN }}$ and $\mathrm{G}_{\mathrm{MAX}}$ to solve for $\mathrm{A}_{0, \mathrm{MIN}}$.
Hint \#2: $\mathrm{A}_{0, \mathrm{MIN}}$ should be around 1350.
(b) What is the value of β needed for your amplifier? Hint: You should get $\beta=0.033$.
(c) What is the nominal gain A_{0} ? Hint: You should get $\mathrm{A}_{0}=3000$.

D. Amplifier Stability

8) An amplifier has an open-loop DC gain of $\mathrm{A}_{0}=10,000$ and poles at $1 \mathrm{kHz}, 100 \mathrm{kHz}$, and 10 MHz .
a) Sketch the Bode plots for magnitude and phase from 1 Hz out to 10 MHz .
b) Using your Bode plots, find the value of β that produces a phase margin of 45°.
c) When $\beta=1$, use your Bode plots to find the frequency where $\mathrm{A} \beta=1$ and compute the resulting phase of A using the exact expression.
d) Is it OK to make a buffer $(\beta=1)$ with this amplifier?
