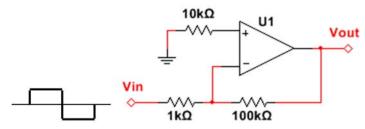
ECE 363 QUIZ 3 (F19)


NAME:_____

1 problem for 20 pts

Op Amp Speed and Output Error

Consider an inverting amplifier built with an LM248 op amp. The closed loop gain is |G| = +40 dB. The input V_{IN} is a 20 mV_{PP} square wave at 3 kHz.

- (a) Compute the amplifier's small-signal bandwidth and rise time T_{R} .
- (b) Compute the slew rate-limited rise time T_{SR} for V_{OUT} .

- (c) Sketch both the input V_{IN} and output V_{OUT} over a 1 ms interval. Label important features!
- (d) Compute the worst-case output error voltage.

(extra sheet for work)			
ECE 363: Design of Electronic Circuits	Quiz	Oct 15, 2019	2

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

		LM148	LM248	LM348	
Supply Voltage		±22V	±18V	±18V	
Differential Input Voltage		±44V	±36V	±36V	
Output Short Circuit Duration	on ⁽³⁾	Continuous	Continuous	Continuous	
Power Dissipation (P _d at 25	5°C) and Thermal Resistance (θ _{jA}) ⁽⁴⁾				
DIP (NFF) P _d		_	_	750 mW	
	θ_{JA}	_	_	100°C/W	
CDIP (J) P _d		1100 mW	800 mW	700 mW	
	θ_{JA}	110°C/W			
Maximum Junction Temperature (T _{iMAX})		150°C	110°C	100°C	
Operating Temperature Range		-55°C ≤ T _A ≤ +125°C	-25°C ≤ T _A ≤ +85°C	0°C ≤ T _A ≤ +70°C	
Storage Temperature Range		-65°C to +150°C	-65°C to +150°C	−65°C to +150°C	
Lead Temperature (Soldering, 10 sec.) Ceramic		300°C	300°C	300°C	
Lead Temperature (Solderi	ing, 10 sec.) Plastic			260°C	
Soldering Information					
Dual-In-Line Package	Soldering (10 seconds)	260°C	260°C	260°C	
Small Outline Package	Vapor Phase (60 seconds)	215°C	215°C	215°C	
	Infrared (15 seconds)	220°C	220°C	220°C	
ESD tolerance ⁽⁵⁾		500V	500V	500V	

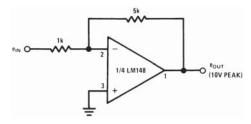
- (1) Refer to RETS 148X for LM148 military specifications.
- (2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
- (3) Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
- (4) The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T_{JMAX}, θ_{JA}, and the ambient temperature, T_A. The maximum available power dissipation at any temperature is P_d = (T_{JMAX} T_A)/θ_{JA} or the 25°C P_{DMAX}, whichever is less.
- (5) Human body model, 1.5 k Ω in series with 100 pF.

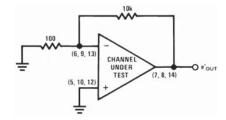
Electrical Characteristics

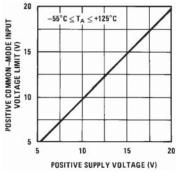
These specifications apply for $V_S = \pm 15V$ and over the absolute maximum operating temperature range $(T_L \le T_A \le T_H)$ unless otherwise noted.

Parameter	Conditions	LM148			LM248			LM348			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$T_A = 25$ °C, $R_S \le 10 \text{ k}\Omega$		1.0	5.0		1.0	6.0		1.0	6.0	mV
Input Offset Current	T _A = 25°C		4	25		4	50		4	50	nA
Input Bias Current	T _A = 25°C		30	100		30	200		30	200	nA
Input Resistance	T _A = 25°C	0.8	2.5		0.8	2.5		0.8	2.5		ΜΩ
Supply Current All Amplifiers	$T_A = 25^{\circ}C, V_S = \pm 15V$		2.4	3.6		2.4	4.5		2.4	4.5	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L \ge 2 \text{ k}\Omega$	50	160		25	160		25	160		V/mV
Amplifier to Amplifier Coupling	T _A = 25°C, f = 1 Hz to 20 kHz (Input Referred) See Crosstalk Test Circuit		-120			-120			-120		dB
Small Signal Bandwidth	T _A = 25°C, LM148 Series		1.0			1.0			1.0		MHz
Phase Margin	$T_A = 25$ °C, LM148 Series (A _V = 1)		60			60			60		degrees

Submit Documentation Feedback


Electrical Characteristics (continued)


These specifications apply for $V_S = \pm 15V$ and over the absolute maximum operating temperature range $(T_L \le T_A \le T_H)$ unless otherwise noted.


Parameter	Conditions		LM148			LM248			LM348		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Slew Rate	$T_A = 25$ °C, LM148 Series (A _V = 1)		0.5			0.5			0.5		V/µs
Output Short Circuit Current	T _A = 25°C		25			25			25		mA
Input Offset Voltage	R _S ≤ 10 kΩ			6.0			7.5			7.5	mV
Input Offset Current				75			125			100	nA
Input Bias Current				325			500			400	nA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$, $R_L > 2 k\Omega$	25			15			15			V/mV
Output Voltage Swing	$V_S = \pm 15V, R_L = 10 \text{ k}\Omega$	±12	±13		±12	±13		±12	±13		V
	$R_L = 2 k\Omega$	±10	±12		±10	±12		±10	±12		V
Input Voltage Range	V _S = ±15V	±12			±12			±12			V
Common-Mode Rejection Ratio	R _S ≤ 10 kΩ	70	90		70	90		70	90		dB
Supply Voltage Rejection	$R_S \le 10 \text{ k}\Omega, \pm 5V \le V_S \le \pm 15V$	77	96		77	96		77	96		dB

CROSS TALK TEST CIRCUIT

