1 problem for 20 pts

Pulse Width Modulator

Consider the pulse width modulator shown in the figure below. The circuit uses three op amps (two for the triangle wave generator, one for the comparator). The desired specs are the following:

- Triangle wave: 8 volt peak-to-peak (within 5%) at 4 kHz (within 5\%)
- All op amps powered with split power supplies (+/- 12 V).
- Assume $\mathrm{V}_{\mathrm{SAT}(+)}=+\left(\mathrm{V}_{\mathrm{Cc}}-1\right)$ and $\mathrm{V}_{\mathrm{SAT}(-)}=-\left(\mathrm{V}_{\mathrm{Cc}}-1\right)$
- $\mathrm{V}_{\text {SIG }}=+2 \mathrm{~V}$
- Use standard 5% resistor and 10% capacitor values.

The following formulas may be useful:
o Triangle wave frequency: $f=R_{2} /\left(4 R_{1} R_{3} C\right)$
o Threshold voltage:
$\mathrm{V}_{\mathrm{TH}}=\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)\left(\mathrm{V}_{\mathrm{SAT}(+)}-\mathrm{V}_{\mathrm{SAT}(-)}\right) / 2$
o Reference voltage:
$\mathrm{V}_{\mathrm{REF}}=\left(\mathrm{V}_{\mathrm{SAT}(+)}+\mathrm{V}_{\mathrm{SAT}(-)}\right) / 2$

a) Choose R_{1} and R_{2}. Remember that R_{2} is typically in the 100 kohm range.
b) Choose R_{3} and C . Remember that C is typically between 1 nF and 100 nF .
c) Choose an appropriate value for R_{4}.
d) Based on your component values, compute the actual frequency and peak-to-peak amplitude to confirm they satisfy the design requirements.
e) Sketch the PWM output over a 1 ms interval and include the duty cycle. Note: Be careful with analyzing the input connections to the comparator.
(extra sheet for work)
(extra sheet for work)

Standard Resistor Values $(\pm 5 \%)$						
1.0	10	100	1.0 K	10 K	100 K	1.0 M
1.1	11	110	1.1 K	11 K	110 K	1.1 M
1.2	12	120	1.2 K	12 K	120 K	1.2 M
1.3	13	130	1.3 K	13 K	130 K	1.3 M
1.5	15	150	1.5 K	15 K	150 K	1.5 M
1.6	16	160	1.6 K	16 K	160 K	1.6 M
1.8	18	180	1.8 K	18 K	180 K	1.8 M
2.0	20	200	2.0 K	20 K	200 K	2.0 M
2.2	22	220	2.2 K	22 K	220 K	2.2 M
2.4	24	240	2.4 K	24 K	240 K	2.4 M
2.7	27	270	2.7 K	27 K	270 K	2.7 M
3.0	30	300	3.0 K	30 K	300 K	3.0 M
3.3	33	330	3.3 K	33 K	330 K	3.3 M
3.6	36	360	3.6 K	36 K	360 K	3.6 M
3.9	39	390	3.9 K	39 K	390 K	3.9 M
4.3	43	430	4.3 K	43 K	430 K	4.3 M
4.7	47	470	4.7 K	47 K	470 K	4.7 M
5.1	51	510	5.1 K	51 K	510 K	5.1 M
5.6	56	560	5.6 K	56 K	560 K	5.6 M
6.2	62	620	6.2 K	62 K	620 K	6.2 M
6.8	68	680	6.8 K	68 K	680 K	6.8 M
7.5	75	750	7.5 K	75 K	750 K	7.5 M
8.2	82	820	8.2 K	82 K	820 K	8.2 M
9.1	91	910	9.1 K	91 K	910 K	9.1 M

Standard Capacitor Values ($\pm 10 \%$)						
10 pF	100 pF	1000 pF	. $010 \mu \mathrm{~F}$. $10 \mu \mathrm{~F}$	$1.0 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$
12 pF	120 pF	1200 pF	. $012 \mu \mathrm{~F}$. $12 \mu \mathrm{~F}$	$1.2 \mu \mathrm{~F}$	
15 pF	150 pF	1500 pF	. $015 \mu \mathrm{~F}$. $15 \mu \mathrm{~F}$	$1.5 \mu \mathrm{~F}$	$15 \mu \mathrm{~F}$
18 pF	180 pF	1800 pF	. $018 \mu \mathrm{~F}$. $18 \mu \mathrm{~F}$	$1.8 \mu \mathrm{~F}$	
22 pF	220 pF	2200 pF	. $022 \mu \mathrm{~F}$. $22 \mu \mathrm{~F}$	$2.2 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$
27 pF	270 pF	2700 pF	. $027 \mu \mathrm{~F}$. $27 \mu \mathrm{~F}$	$2.7 \mu \mathrm{~F}$	
33 pF	330 pF	3300 pF	. $033 \mu \mathrm{~F}$. $33 \mu \mathrm{~F}$	$3.3 \mu \mathrm{~F}$	$33 \mu \mathrm{~F}$
39 pF	390 pF	3900 pF	. $039 \mu \mathrm{~F}$. $39 \mu \mathrm{~F}$	$3.9 \mu \mathrm{~F}$	
47 pF	470 pF	4700 pF	. $047 \mu \mathrm{~F}$. $47 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$	47uF
56 pF	560 pF	5600 pF	. $056 \mu \mathrm{~F}$. $56 \mu \mathrm{~F}$	$5.6 \mu \mathrm{~F}$	
68 pF	680 pF	6800 pF	. $068 \mu \mathrm{~F}$. $68 \mu \mathrm{~F}$	$6.8 \mu \mathrm{~F}$	$68 \mu \mathrm{~F}$
82 pF	820 pF	8200 pF	. $082 \mu \mathrm{~F}$. $82 \mu \mathrm{~F}$	$8.2 \mu \mathrm{~F}$	

