Determination of $\delta^{18}O$ of water and $\delta^{13}C$ of dissolved inorganic carbon using a simple modification of an elemental analyzer/isotope ratio mass spectrometer: an evaluation

Both the stable carbon isotope ratio of dissolved inorganic carbon ($\delta^{13}C_{DIC}$) and the oxygen isotope ratio of water ($\delta^{18}O_{w}$) can provide valuable information. For example, $\delta^{13}C_{DIC}$ values of estuarine waters can help decipher biogeochemical cycling, whereas the $\delta^{18}O_{w}$ can be important for understanding $\delta^{18}O$ of carbonates as a temperature proxy or for tracing water masses. Traditionally, samples for $\delta^{13}C_{DIC}$ and $\delta^{18}O_{w}$ determination have been measured as CO$_2$ purified off-line in glass extraction lines after acidification (in the case of DIC) or equilibration of CO$_2$ with the water to be analyzed, before being measured on a dual-inlet isotope ratio mass spectrometer (IRMS). A variety of preparation techniques have since been developed for $\delta^{13}C_{DIC}$ (recently reviewed in Atekwana and Krishnamurthy) and $\delta^{18}O_{w}$ determinations. Although many of these newer techniques avoid the use of extensive glass extraction lines, they often require expensive peripherals in addition to the most common elemental analyzer (EA)-IRMS setup (e.g., St-Jean, Torres et al., Spotl and Seth et al.) or require significant modifications to the IRMS such as sample loop systems (e.g., Prosser et al. and Salata et al.). We report herein the evaluation of a previously unpublished, but widely used, adaptation of an EA-IRMS setup which enables the determination of $\delta^{13}C_{DIC}$ and $\delta^{18}O_{w}$. The approach differs slightly from those described by Prosser et al. and Salata et al., but requires substantially less hardware modifications for most IRMS laboratories, and is therefore generally inexpensive to implement. These methods basically involve the injection of CO$_2$ from a sample headspace, obtained after acidification of water samples for $\delta^{13}C_{DIC}$ or equilibration of small water samples with CO$_2$ for $\delta^{18}O_{w}$, into the He flow of an EA-IRMS setup. The method is robust and standard deviations (1σ) better than ±0.2‰ can easily be achieved. We provide data from in-house standards as well as natural fresh and salt water samples.

The setup described here is a Flash 1112 Series EA coupled via a Conflo III to a ThermoFinnigan Delta+XL continuous flow (CF)-IRMS (Bremen, Germany). The only modification required is the installation of an injection port in the He carrier gas line, between the reduction column and the water trap. Since we inject the samples after the EA reactors, the oven temperatures for the reactors were set to lower temperatures than when operating for sample combustions (i.e. our standby settings are 800°C for the combustion column and 500°C for the reduction column). The gas chromatography (GC) column was held at 80°C, the water trap was filled with magnesium perchlorate, and the He flow was set at approximately 90 mL/min. The IRMS was run under the Isodat v2.0 software, and the method events consisted of three reference CO$_2$ pulses, up to four sample peaks (in principle, from different vials rather than multiple injections from a single sample headspace) at approximately 2-3 min intervals, followed by one or two final CO$_2$ reference pulses to correct for drift. Thus, four samples (generally two samples in duplicate) can be analyzed in approximately 15 min (for either $\delta^{18}O_{w}$ or $\delta^{13}C_{DIC}$).

Water samples for $\delta^{18}O$ analysis were collected by filling 100 mL polyethylene containers and adding 60 µL of a saturated HgCl$_2$ solution. Containers were capped tightly, the seal wrapped with Parafilm to avoid evaporation, and were stored at room temperature. Water samples for determination of $\delta^{13}C_{DIC}$ were sampled by gently over-filling headspace vials (25, 20, 10, 6 or 2 mL) with water. Vials were rinsed with sample water three or six times before sampling. A volume of 1063 to 60 µL of a saturated HgCl$_2$ solution was added (depending on vial size) and the vials were capped and stored at room temperature until analysis. Alternatively, samples for $\delta^{13}C_{DIC}$ determination may be injected into He-flushed vials.

The procedure for measuring $\delta^{18}O_{w}$ is modified from Prosser et al. and is both easier and faster than traditional off-line methods. The approach is similar to existing off-line methods, except that equilibration and gas exchange are done directly in a gas-tight headspace vial and only 0.5 mL of each sample is required. Headspace vials (12 mL) are first flushed with He gas and are capped with a rubber septum and aluminum seal; alternatively, Exo-82 tainer vials (Labco, High Wycombe, UK) may be used. Approximately 500 µL of sample water is injected into the vial, and then 200 µL of pure CO$_2$ is added from a tank is injected using a gas-tight syringe. The samples are then placed in a shaker for 2 h and left to equilibrate for about 24 h (for freshwater samples) or about 48 h (for seawater samples). For seawater samples, the sample was stored at ambient laboratory temperature (~23°C, in a climate-controlled room). This is more than enough time to compensate for the salt effect on the kinetic of the CO$_2$–H$_2$O isotopic exchange equilibrium, which has been determined to be three times longer in seawater than in freshwater (or at least 24 h). In each batch of samples, two in-house second-order standards (previously calibrated against the water standards: VSMOW, GISP and SLAP, see Table 1) were measured similarly processed: one seawater (SW1) and one tapwater (TAP) (Table 1). Table 1 also presents results on two other in-house seawater standards (NWS and NWSG) which had been prepared in a different context. After equilibration, 1000 µL of CO$_2$ is drawn from the headspace into a gas-tight syringe that has previously been flushed with He for 15 min and is injected into the injection port on the EA-IRMS setup. The signal to noise ratio for the second-order standards was approximately 20, with an error on the determinations of about ±0.2‰.
Table 1. Uncorrected water isotopic standards analyzed using the method described here. All standard deviations (1σ) are better than 0.15‰. The data are compared with the accepted values for the IAEA standards. All environmental data are normalized so that SLAP is exactly –55.5‰.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Accepted δ^{18}O_{VSMOW} (%)</th>
<th>Measured δ^{18}O_{VSMOW} (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSMOW*</td>
<td>0.0016</td>
<td>0.11 ± 0.09</td>
<td>5</td>
</tr>
<tr>
<td>GISP</td>
<td>–24.78 ± 0.0918</td>
<td>–24.70 ± 0.06</td>
<td>4</td>
</tr>
<tr>
<td>SLAP*</td>
<td>–55.516</td>
<td>–54.76 ± 0.06</td>
<td>3</td>
</tr>
<tr>
<td>TAP0409b</td>
<td>–7.30 ± 0.14</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>NWSGb</td>
<td>–7.36 ± 0.10</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>NWSb</td>
<td>–7.66 ± 0.12</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>SW1b</td>
<td>0.01 ± 0.13</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

* By definition.16

uncorrected data, obtained using the δ^{18}O value of the tank CO$_2$ gas, are available in Table 1. All data are expressed in % relative to VSMOW (0.0‰) on a scale normalized so that SLAP is exactly –55.5‰.16 The precision was better than 0.15‰ (1σ), determined by repeated analyses of the seawater and tapwater standards and replicate sample analyses (Table 1). This precision is similar to that obtained using traditional off-line methods (i.e. <0.2‰).

A modified version of the method described by Salata et al.13 was used for δ^{13}C$_{DIC}$ analysis. For vials filled to the top, a headspace was first created by inserting an empty, fully depressed, 10 mL syringe and needle through the septum, then inserting a needle attached to a He bottle at a pressure of 1–1.5 bar, until the required volume of water had been replaced (typically ~20% of the total volume of the vial, but with a minimum of at least 1.5 mL headspace for small vial types). After the He supply line had been removed, the pressure was equalized in the other syringe. Once the headspace had been created (or for vials where the sampling procedure already created a headspace), warm 85% phosphoric acid was added (typically ~500 µL for vials >10 mL and 250 µL for vials <10 mL). Samples were placed upside down in order to avoid contact between headspace and septum, thereby reducing the possibility of exchange with atmospheric CO$_2$.17 and allowed to equilibrate for several hours in a sample shaker (generally overnight). Salata et al.13 reported that the results were stable after 16 to 36 h of equilibration time. A similar experiment was carried out here with 24 replicate tapwater samples injected between 1 and 57 h after acidification and this showed that the samples were within 0.15‰ of the mean between 4 and 56.5 h (Fig. 1; Average = –12.41 ± 0.07‰, n = 20). In addition, 22 other tapwater samples were injected on four separate days and gave an average δ^{13}C$_{DIC}$ of –12.45 ± 0.12‰.

We also tested the effect of using different vial sizes (2, 10, and 25 mL) with similar tapwater samples, each analyzed in duplicate or triplicate. The standard deviation on these seven samples was 0.05‰ (average δ^{13}C$_{DIC}$ = –12.53‰) and no sample deviated by more than 0.1‰ from the overall mean.

This indicates that vial size is not an important factor, but it should be noted

Figure 1. δ^{13}C$_{DIC}$ (VPDB) of 24 replicate tapwater samples equilibrated for different periods of time (1.3–56.5 h) before injection into the EA-IRMS setup.

Copyright © 2007 John Wiley & Sons, Ltd.
DOI: 10.1002/rcm
that our tapwater had high DIC concentrations and therefore produced a lot of CO₂ after acidification. Samples with less DIC (e.g. seawater) will produce less CO₂ and therefore may not contain sufficient CO₂ for injection when using very small sample sizes (2 mL or less). A minimum of 8 μL of pure tank CO₂ was needed to obtain an acceptable signal in the IRMS (Table 2; or ~0.36 μmol of CO₂ assuming standard pressure and temperature). The δ¹³C_DIC values obtained from the seawater standard with lower DIC concentrations were also very reproducible (+1.85 ± 0.08‰, n = 5).

To correct for the partitioning of CO₂ between headspace and the water phase and to calculate the δ¹³C of the total DIC, the equation of Miyajima et al.¹⁵ was applied:

\[
\frac{\delta^{13}C_DIC}{\delta^{13}C_{measured}} = \frac{V_{headspace} \cdot \delta^{13}C_{measured} + (V_{bottle} - V_{headspace}) \cdot \beta \cdot (\delta^{13}C_{measured} + \epsilon_{g})}{V_{headspace} + (V_{bottle} - V_{headspace}) \cdot \beta}
\]

where \(\beta = 0.872 \) at 23°C (Ostwald solubility coefficient); \(\epsilon_{g} \) is calculated from \(\epsilon = -373/T(K) + 0.19 \) (thus, \(\epsilon_{g} = -1.07 \) at 23°C); and \(V_{bottle} \) and \(V_{headspace} \) represent the internal volumes of the sampling vial and headspace, respectively.

These data were subsequently further corrected using the calibrated CO₂ gas (from a tank), which was injected periodically throughout the analysis sequence (~20 μL).

The CO₂ used was calibrated using a dual-inlet IRMS (Delta + XL) against NBS-19 (δ¹³C = +1.95‰, δ¹⁸O = −22.0‰)¹⁶. Typically, the standard deviations of the δ-values of this gas were less than 0.1‰ for repeated injections during a single day.

As there is no certified δ¹³C_DIC standard, our in-house seawater standard (SW1) was used to evaluate the day-to-day variability of our method. Furthermore, to test the precision and accuracy of the method, a standard was produced by dissolving Na₂CO₃ in Ar-purged natural seawater from which all DIC had been previously removed. The Na₂CO₃ powder was also analyzed using an automated carbonate device (ThermoFinnigan).

Table 2. Injections of pure CO₂; CO₂ was drawn from the tank using a gas-tight syringe and injected into the EA-IRMS setup. Average δ¹³C data (VPDB) from injections of 10–20 μL of CO₂ gas are -34.37 ± 0.07‰, n = 21.

<table>
<thead>
<tr>
<th>Injection volume (μL)</th>
<th>n</th>
<th>Area (vs.) ± 1σ</th>
<th>δ¹³C‰ ± 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0.49</td>
<td>-33.34</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0.65 ± 0.16</td>
<td>-33.54 ± 0.33</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1.85 ± 0.47</td>
<td>-33.87 ± 0.30</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3.49 ± 0.52</td>
<td>-33.87 ± 0.37</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>5.33 ± 0.11</td>
<td>-34.25 ± 0.09</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>7.16 ± 0.71</td>
<td>-34.35 ± 0.15</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>9.59 ± 0.02</td>
<td>-34.37 ± 0.10</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>12.02 ± 0.24</td>
<td>-34.37 ± 0.09</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>14.05 ± 0.71</td>
<td>-34.38 ± 0.04</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>16.82 ± 0.55</td>
<td>-34.38 ± 0.04</td>
</tr>
</tbody>
</table>

Figure 2. δ¹⁸O (VSMOW) and δ¹³C_DIC (VPDB) data from natural waters analyzed using the methods described here. Data in the left panel are from Gazi Bay (Kenya), the Tana River (Kenya), and from Wade Creek (NC, North Carolina, USA). Data labeled ‘Gazi’ were collected in July 2003 and data labeled ‘Gazi Year’ were collected monthly from June 2002 until July 2003. Data from the Tana River were collected in April 2004 and NC data are from various times between December 2001 and August 2003. Data in the right panel are from Gillikin et al.² and are taken from the Scheldt Estuary (The Netherlands) between November 2001 and November 2002.
Kiel III) connected to a dual-inlet IRMS and calibrated versus NBS-19. We observed a difference of 0.22% between the δ^{13}C value of the Na$_2$CO$_3$ solid measured using the Kiel III ($1.10 \pm 0.07n$o, n = 8) and using the injection technique for the δ^{13}C value of the Na$_2$CO$_3$ dissolved in seawater ($1.32 \pm 0.15n$o, n = 12). This difference may be caused by exchange with the atmosphere during preparation of the standard, or could be due to an inhomogeneity in the Na$_2$CO$_3$ powder.

Nevertheless, considering that these means are within 2σ of the analytical precision of the method ($1\sigma = 0.2n$o), the sets of data can be considered indistinguishable using this method.

Example data from estuarine waters analyzed using the methods described above are shown in Fig. 2. The expected linear relationship between salinity and δ^{18}O$_{SO}$ can be seen in samples from three sites (two in Kenya (Gazi Bay and Tana River) and one in North Carolina, USA (Wade Creek)). The intercept of the higher latitude data are more negative as would be expected from Rayleigh distillation.

For the samples collected in Gazi Bay (Gazi Year on Fig. 2), a single data point (at salinity ~8) plots off of the regression line; we interpret this as possibly resulting from an intense rain event, since these are known to produce precipitation which is more depleted in 18O. The linear relationship between salinity and δ^{13}C$_{DIC}$ as illustrated here is not always observed, as various processes may result in non-conservative behavior of DIC along estuarine mixing gradients (see Gillikin et al. for more discussion on these data).

In summary, this simple adaptation of an existing EA-IRMS setup allows for a fast, inexpensive and robust technique for the analysis of δ^{18}O$_{SO}$ and δ^{13}C$_{DIC}$ with reproducibility consistently better than 0.2% for both parameters. Both the δ^{18}O$_{SO}$ and the δ^{13}C$_{DIC}$ methods allow for the measurement of >50 samples per day, with very limited sample preparation time.

The approach described here is particularly suitable for estuarine research where large changes in both δ^{18}O$_{SO}$ and δ^{13}C$_{DIC}$ can be expected (Fig. 2) and for laboratories for which an investment in dedicated, automated peripherals is not warranted by the amount of analyses performed.

Acknowledgements

We are indebted to Joop Nieuwenhuize (NIOO-CHEME, Yerseke, The Netherlands) for introducing this method to us, to Michael Korntueher for laboratory assistance, and to Jared Bosire for collecting the water samples in Gazi Bay over a full year (Gazi Year). This work was completed for part of the PhD dissertation of DPG at the Vrije Universiteit Brussel, Belgium. Funding was provided to DPG by Belspo, the Belgian Federal Science Policy Office, Brussels, Belgium (CALMARS I & II, contracts EV/03/04B & SD/CS/02A); the ESF-Euroclimate Paleosalt project funded by the Research Foundation Flanders (contract: G.064.05); and a 2001 Grant-in-Aid of Research from the National Academy of Sciences, administered by Sigma Xi. S.B. is funded by a postdoctoral mandate from the Research Foundation Flanders (contracts EV/03/04B & SD/CS/02A); the building and operation of the environmental science facility funded by the Research Foundation Flanders (VWO-Vlaanderen). We thank A. Verheyden and two anonymous reviewers for comments on earlier versions of this manuscript. This is publication XXX of the Netherlands Institute of Ecology.

David P. Gillikin*1 and Steven Bouillon2,3
Department of Earth Science and Geography, Vassar College, Box 475, Poughkeepsie, NY 12604, USA

1Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
2Netherlands Institute of Ecology, Centre for Estuarine and Marine Ecology (NIOO-CHEME), Koringaweg 7, 4401 NT Yerseke, The Netherlands

*Correspondence to: Department of Earth Science and Geography, Vassar College, Box 475, Poughkeepsie, NY 12604, USA
E-mail: dagillikin@vassar.edu

REFERENCES

Received 8 January 2007
Revised 5 February 2007
Accepted 6 February 2007

DOI: 10.1002/rcm

Copyright © 2007 John Wiley & Sons, Ltd.