A firefighter 50 m away from a burning building directs a stream of water from a fire hose at an angle of 30° above the horizontal as shown below. If the speed of the stream is $40 \mathrm{~m} / \mathrm{s}$, at what height will the water strike the building?

A Northrop B-2 Stealth bomber is flying horizontally over level ground, with a speed of $275 \mathrm{~m} / \mathrm{s}$ at an altitude of 3000 m . Neglect air resistance in the following problems.

How far will a bomb travel horizontally between its release and its impact on the ground?
a. If the plane maintains its original course and speed, where will it be when the bomb hits the ground?
b. At what angle from the vertical should the bombsight be set so that the bomb will hit the target seen in the sight at the time of release?

http://es.geocities.com/scuadrafotos/B-2-6.jpg

An enemy ship is on the western side of a mountain island. The enemy ship can maneuver to within $\mathbf{2 5 0 0} \mathbf{~ m}$ of the 1800 m high mountain peak and can shoot projectiles with an initial speed of $250 \mathrm{~m} / \mathrm{s}$. If the eastern shore line is horizontally 300 m from the peak, what are the distances from the eastern shore at which a ship can be safe from the bombardment of the enemy ship?

The determined coyote is out once more to try to capture the elusive roadrunner. The coyote wears a pair of Acme jet-powered roller skates, which provide a constant horizontal acceleration of $15 \mathrm{~m} / \mathrm{s}^{2}$. The coyote starts off at rest 70 m from the edge of a cliff at the instant the roadrunner zips past him in the direction of the cliff.
a. If the roadrunner moves with constant speed, determine the minimum speed he must have to reach the cliff before the coyote.
b. At the brink of the cliff the roadrunner escapes by making a sudden turn, while the coyote continues straight off of the cliff. If the cliff is 100 m above the floor of a canyon, where does the coyote land, assuming that his skates remain horizontal and continue to work while in flight?

c. What are the components of the coyote's impact velocity?

A quarter is thrown off of a large building at an upward angle of 30° with respect to the horizontal, with an initial speed of $10 \mathrm{~m} / \mathrm{s}$.
a. How long does it take the quarter to hit the ground if the building is 45 m tall?
b. What is the velocity of the stone just before it strikes the ground?
c. How long does it take the quarter to reach its maximum height above the building and what is that height?
d. How long does it take the quarter to come back to the same height from which it was thrown?
e. What is the vertical component of the velocity when the quarter passes this point in part c?
f. How long does it take the quarter to fall through the remaining 45 m if it's vertical component of velocity is that in part d?
g. Suppose that it the quarter were just dropped straight down from the building top, how long would it be in flight?
h. What would the velocity of the quarter be in the case of part e?

