
Capacitance and Resistance 
 
Capacitance 

 In the last chapter we studied charges and moving charges around in electrostatic 

fields.  We also calculated work done in moving theses charges around.  Now we will 

build a device useful for storing electric charge, called the capacitor.  The capacitors only 

function is to store electric charge.  A capacitor is simply two metallic plates separated by 

a gap, where the gap between the plates is usually filled with a material called a 

dielectric.  What we will find is that the amount of charge that a capacitor can store is a 

geometric property of the capacitor.  Each metallic plate stores charge of the same 

magnitude and of opposite sign.  These capacitor plates are separated by a distance d, and 

because there is a separation of electric charge, a difference in electric potential exists 

across the metal plates.  Some typical capacitor geometries are shown below.  We have 

on the left two cylindrical plates while on the right we have two parallel plates (of 

arbitrary shape.)   
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We will begin our study of capacitance by investigating the geometric properties 

and quantifying our results through by assigning a capacitance (a relation between the 

electric potential created across the plates and the amount of charge on the plates.)  We 

will then learn how to charge and discharge a capacitor as well as calculate the amount of 

energy stored in a fully charged capacitor.  In order to investigate how a capacitor is 



charged and discharged we need to study the “movement” of the electric charges in an 

electric circuit.  The movement of the electric charges around a closed path is called the 

electric current.  However, before we go too far, we should start looking at capacitance 

and the storage of electric charge. 

Suppose that we have two parallel plates (of arbitrary shape) with a cross 

sectional area A.  Let these plates be separated by a distance d.  We will assume to start, 

that we have a charge +Q put on one plate and charge –Q on the other plate.  

Experimentally we find that the potential difference that exists is proportional to the 

amount of charge that we have on each plate, meaning that if the charge on the plates, say 

doubles, so too does the electric potential difference across the plates.  To quantify this 

result, we multiply by a constant so that VCQ ∆=∆ , where this constant of 

proportionality is called the capacitance, C, in units of Coulombs per Volt, also called a 

Farad.  In exactly the same way that one Coulomb represents a huge amount of charge, so 

too a Farad represents a large capacitance, and usually we only see fractions of a Farad.   

Earlier we mentioned that the plates are usually separated by a material, called a 

dielectric that is meant to keep the plates from touching and neutralizing.  A dielectric 

material in between the plates of a capacitor affects the value of the capacitor.  A 

dielectric is a material that is easily polarized due to the influence of the charges on the 

plates.  This means that the molecules that make up the dielectric will be able to align 

themselves with the charges on the plates.   So let’s first assume that we have an empty 

(no dielectric material in between the capacitor plates) and that we charge the capacitor 

so that we have a magnitude of charge Q on each plate and then removed the charging 

device, thus ensuring that the magnitude of the charge placed cannot change.  The 



number of electric field lines that pass through the area of the plates perpendicularly (by 

Gauss’ Law) will be proportional to the magnitude of the electric field that exists.  For an 

empty (or air-filled) capacitor we have the magnitude of the electric field given as Eempty 

as shown in the figure below.  Inserting the dielectric, the molecules of the dielectric are 

polarized, meaning that their ends have had a charge induced on them and the molecule 

has an induced electric field with the same magnitude and opposite direction that cancels 

the electric field due to the charges on the capacitor plates.  However, some places are not 

occupied by the dielectric molecules and here the electric field due to the charges on the 

plates is unchanged.  We count the number of field lines as a measure of the magnitude of 

the electric field when the dielectric is inserted and we call this value Edielectric. 
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We can immediately see that the number of field lines with the dielectric is less 

than those without the dielectric and we define the ratio of the Eempty to Edielectric as the 

dielectric constant
dielectric

empty

E
E

=κ , or the amount by which the number of electric field lines 

changes.   Since the number of field lines in the empty (or air-filled) capacitor is greater 

than the number of field lines when the dielectric is inserted, dielectric constant are 



always greater than unity.  The electric field can be related to the potential difference that 

exists across the capacitor plates, both of which are separated by a distance d.  We have 
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=κ .  From our definition of capacitance, and knowing that the amount of 

charge has to remain constant since we disconnected the charging device, we have 
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dielectric material inserted is greater than that without a dielectric material.  If a charging 

device were attached to the capacitor with the dielectric, more charge would flow onto 

the plates, because we have a greater capacity for storing charge, mainly due to the 

reduce electric field that is established between the plates.  In other words, it is easier to 

put the more charges on the plates and ultimately more charges would flow.  

 We could measure potential differences for various amounts of charge placed on 

each plate in order to perhaps use graphical analysis to determine the capacitance of the 

system.  However, is there a way to evaluate the capacitance that avoids this procedure?  

The answer is of course, yes.  To theoretically determine the capacitance of a system of 

two parallel plates of cross sectional area A, separation d, and with magnitude of charge 

on each plate Q, we turn to Gauss’ Law.  Using Gauss Law to evaluate the electric field 

that exists between the plates we find
A

QE
0ε

= , where A is the cross-sectional area of the 

plates.  For the empty (or air-filled) capacitor, we have the magnitude of the electric field 



given as
A

QEempty
0ε

= .  Returning to the relation between the electric fields of the empty 

and dielectric filled capacitors we have
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.  Rearranging 

this expression we find that 
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∆
=∆ κκε0 , where the capacitance of an 

empty (or air-filled) capacitor is
d
ACempty

0ε= .  Here we can see that the capacitance 

depends on the geometric properties out of which the capacitor is constructed.  This result 

is valid for any type of capacitor, not just for parallel plates, although the analysis to get 

this result in other geometries is harder.  Further, we can see by this result that if the plate 

area increases then more charge can be stored, and the capacity to hold the charge 

increases.   

 When a capacitor stores charge, it also stores energy.  It takes work to put the 

charge on the capacitor plates and the work done manifests itself as a storage of energy in 

the capacitor, specifically in the electric field that exists between the capacitor plates.  To 

calculate the amount of energy that is stored, we need to calculate the amount of work 

done.  This is an integral process analogous to placing charges one at a time across the 

plates until the total amount of charge that is required on each plate is achieved.  Here we 

will calculate the amount of work, but considering some small amount of work done each 

time another charge q is placed in the potential created due to all other placed charges.  

The total work (the product of the charge and the potential difference created) then is 



given by QVCV
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, where the definition of 

capacitance has been used. 

 We have said that capacitors are used to store charge and that it takes work, from 

some external agent (a battery perhaps) to charge the capacitor.  Now we will apply what 

we have learned about capacitors and tackle some problems involving capacitance and 

the energy stored in the electric field of a capacitor. 

Example #1 – Calculating capacitance 

Two conductors have net charges of ±10 µC and a potential difference of 10 V exists 

across the conductors.  What are the capacitance of the system the potential difference 

that would be measured across the conductors if the charge on the conductors is increased 

to ±100 µC? 

Solution – The capacitance is given through the relation 
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Since the capacitance is a property of the arrangement of conductors it is a 

constant.  Thus, if the charge is increased on the conductors, the new potential 

difference that would be measured is 
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Example #2 – How many electrons flow? 

How many electrons flow onto a parallel plate capacitor that has a capacitance of 9.0 µF 

and is connected to a battery that is rated at 12.0V? 

Solution – The amount of charge that flows is given as 



. CVFCVq 46 101.10.12100.9 −− ×=××==

Since the charge on the electron is 1.6x10-19 C, we have 6.75x1014 e- that flow. 

  

Example #3 – The cell membrane as a capacitor Example #3 – The cell membrane as a capacitor 

A cell membrane can be modeled as a capacitor.  What is the magnitude of the electric 

field across a cell membrane if the membrane is 1.1x10-8m thick and a resting potential 

difference across the cell membrane is -70 mV? 

A cell membrane can be modeled as a capacitor.  What is the magnitude of the electric 

field across a cell membrane if the membrane is 1.1x10-8m thick and a resting potential 

difference across the cell membrane is -70 mV? 

Solution – We find the electric field using the relation Solution – We find the electric field using the relation 
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Example #4 – Lightning 

In lightning storms, the potential difference between the Earth and the bottom of the 

thunderclouds can be as high as 35,000,000 V. The bottoms of the thunderclouds are 

typically 1500 m above the Earth, and can have an area of  Modeling the Earth-

cloud system as a huge capacitor, calculate (a) the capacitance of the Earth-cloud system, 

(b) the charge stored in the “capacitor,” and (c) the energy stored in the “capacitor.” 

.km110 2

Solution -  

 (a)  From the definition of the capacitance, we have 
( )( )

( )

12 2 2 6 2
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(b)  From the relation between the charge and the potential difference we have  

( )( )7 76.49 10 F 3.5 10 V 22.715C 23CQ CV −= = × × = ≈  

 (c)  The energy stored in a capacitor is calculated using 

( )( )7 81 1
2 2PE 22.715C 3.5 10 V 4.0 10 JQV= = × = ×  

  

 

 



Example #5 – More on cell membranes 

Suppose a biological membrane with a specific capacitance of 1 µF/cm2 has a resting 

surface charge density of 0.1 µC/cm2.  Also suppose there are 50 sodium channels per 

µm2 and that when each opens for 1 ms 1000 Na+ ions flow through the channel.  Find 

the membrane voltage 1 ms after 10% of these channels open, assuming no other changes 

occur during this time. 

  

Solution - Here we need to calculate the actual charge that flows per unit area.  To calculate this 

we need 
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Then, the membrane voltage is simply 
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Example #6 – Even more on cell membranes 

In a 100 µm2 area of a muscle membrane having a density of sodium channels of 50 per 

µm2 of surface area, when the sodium channels open there is a rapid flow of 1000 ions 

per channel across the membrane.  Assuming a 100 mV resting potential, all the channels 

opening at once and a membrane capacitance of 1 µF/cm2, find the voltage change across 

this area of membrane due solely to the sodium ion flow. 

Solution - The potential across the membrane is given as the total charge that flows divided by 

the capacitance of the muscle membrane.  The total charge that flows is given 

from CCm
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the capacitance is product of the specific capacitance and the muscle area.  This gives the 

capacitance of the muscle as 1x10-12F.  Thus the potential difference across the membrane 

is mVV
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or a change of 700mV. 

 



Example #7 – More on Capacitance 

An air-spaced parallel-plate capacitor has an initial charge of 0.05 µC after being 

connected to a 10 V battery. 

a) What is the total energy stored between the plates of the capacitor? 

b) If the battery is disconnected and the plate separation is tripled to 0.3 mm, what is 

the electric field before and after the plate separation change? 

c) What is the final voltage across the plates and the final energy stored between the 

plates? 

d) Calculate the work done in pulling the plates apart.  Does this fully account for 

the energy change in part (b)? 

Solution -  

a. The energy is given by 
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b. The electric field is given through
d
VE
∆
∆

= .  The initial electric field is thus 10V 

/ 0.1mm = 100 kN/m and the electric field after the separation is depends on the 

potential across the plates.  To calculate this potential we know that the charge 

remains fixed (the battery has been disconnected) and the capacitance decreases 

by a factor of 3.  Thus the new potential difference is 
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and the electric field is 30V / 0.3mm = 

100kN/m 

c. The final potential is the same as the battery or 30V and the energy stored in the 

capacitor is ( ) J
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d. The work done is the change in energy which is 5x10-7J. 

 

 

 



Electric Current 

 In our studies up to now, we have looked at electrostatics, or electric charges that 

are at rest and we have investigated the electric forces and electric fields due to 

collections of point charges.  We have also investigated, briefly, the electric forces and 

fields due to planes of charge and the storage of charge when we studies capacitors.   

Now we would like to turn our attention to the situation where we actually let the charges 

start to move.  The movement of an electric charge is called electric current. 

 To establish a current flow in a conductor we need to establish an electric field (so 

that the charge carriers feel an electric force and will experience a change in motion in 

response to that force).  Further, to establish an electric field in the conductor we will 

need to create a potential difference across the conductor, using perhaps a battery, a 

device that transforms chemical energy into electrical energy.  When a continuous 

conducting path is created between the terminals of a battery an electric circuit is created 

and an electric current will flow.  The amount of electric charges that pass through the 

wires (or conductors) cross section at any point per unit time is called the electric current.  

Thus we have the electric current 
t
QI
∆
∆

= in units of the Ampere, or one Coulomb of 

charge that passes any point in one second of time.  Hence, since the Coulomb is a large 

unit of charge, an Ampere is a large amount of current.   

 Conductors are composed of metals with many free electrons.  In response to an 

applied electric field these electrons will move (in a direction opposite to that of the 

electric field that is applied.)  For historical reasons, we choose not to use the electrons 

when developing our model of current flow in a conducting wire.  Instead we adopt a 

conventional current of positive charge carriers, keeping in mind that the actual flow of 



current is due to electron flow.  In addition, there are two types of current flow, in 

response to the nature of the applied electric field (and applied potential.)  Those two 

currents are labeled as direct current (DC) and alternating current (AC).  If the electric 

potential is constant in time, and hence the electric field is constant in time, the flow of 

conventional current will be in only one direction and will be constant in time as well.  

Alternately, if the electric potential oscillates in time, say in a sinusoidal fashion, the 

electric field will oscillate sinusoidally in time and the current will fluctuate sinusoidally 

with time, and this is termed alternating current. 

Resistance and Electric Circuits 

 

 

Charging and Discharging Capacitors 

 Having investigated how capacitors function, as well as how charges move in 

conductors, the electric current, the question that we avoided was actually how we get the 

charge onto the capacitor or even how we take the charge off of the capacitor.  In order to 

charge and discharge a capacitor, we will assume a circuit that contains a battery 

connected in parallel (using a switch) with a resistor and a capacitor connected in series 

as shown below.  When the switch is closed current will flow through the resistor and 

build up on the capacitor as a function of time.  When the switch is opened current will 

from through the resistor and will eventually neutralize the capacitor. 
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Charging a Capacitor 

To study the charging of the capacitor we apply Kirchhoff’s rule for potentials to 

the circuit containing the battery, capacitor and resistor.  Traversing the closed loop one 

time we have 0=−−=−−=−−
C
qR

dt
dqV

C
qIRVVVV BBCRB .  This is a differential 

equation that when solved will show how the charge builds up on the capacitor as a 

function of time.  To solve this equation, we “separate and integrate” meaning that we 

will place all of the terms involving the charge (one of the variables we want to solve for) 

on one side of the equals sign and the time dependant terms (the other variable of 

interest) one the other side.  Rewriting our equation for the charging of a capacitor we 

have ( ) RC
dt

qCV
dq

B

=
−

.  This expression will be integrated from time ti = 0 (when qi = 0) 

to a later time tf (when charge qf has been placed on the capacitor.)  Thus we 
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f eqtq 1max , where the 

maximum charge on the capacitor is a product of the potential difference of the battery 

and the capacitance of the capacitor, VBC.   



Here we encounter a term that we will use quite extensively to characterize 

resistor-capacitor circuits.  The product of the resistance and the capacitance is called the 

time constant, RC=τ , of the circuit, in units of seconds.  To see physically what the time 

constant means, let’s insert it into the equation for the charge accumulation as a function 

of time.  Thus we have ( ) maxmax 632.01 qeqRCq RC
RC

f =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−
, or 63.2% of the maximum 

amount of charge has been put on the capacitor.  Therefore we conclude that in one time 

constant, we accumulate 63.2% of the maximum amount of charge. 

However, one might ask how do you actually count or “see” the charges as they 

get put on the capacitor?  Of course we cannot, but what we can “see” is how the 

potential difference across the capacitor changes with time using a voltmeter or a 

computer sensor designed to measure voltages.  Since we have a relation between the 

potential difference across a capacitor and the charge on the capacitor , we can 

rewrite the equation for the accumulation of charge on the capacitor in terms of the 

potential difference, and we have

CVq =
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Discharging a Capacitor 

If we disconnect the battery from the circuit by opening the switch, the capacitor 

will discharge through the resistor.  To describe how the charge leaves the capacitor as a 

function of time we return to our original equation as derived by using Kirchhoff’s 

equation or, 0=−−=−−=−−
C
qR

dt
dqV

C
qIRVVVV BBCRB and set the potential difference 

due to the battery, VB, equal to zero as we have removed it from the circuit.  This 



gives 0=−−=−−
C
qR

dt
dq

C
qIR .  We again have a differential equation involving the 

charge q and time.  We again “separate and integrate” this equation from time ti = 0 

(when qi = qmax) to a later time tf (when charge qf remains on the capacitor.)  Thus we 
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Again we have the product of the time constant in the denominator of the 

exponential function.  Evaluating at this time we find ( ) maxmax 368.0 qeqRCq RC
RC
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or 36.8% of qmax remains on the capacitor.  This of course means that 63.2% of the 

maximum charge has been removed from the capacitor.  Therefore we can conclude that 

the RC-time constant is the time required to charge the capacitor to 63.2% of its 

maximum charge OR the time required to remove 63.2% of the maximum accumulated 

charge from the capacitor. 

However, we could ask how do you actually count or “see” the charges as they 

leave the capacitor?  We express the answer to this in terms of the potential difference 

across the capacitor as it changes with time using a voltmeter or a computer sensor 

designed to measure voltages.  Again, using the relation between the potential difference 

across a capacitor plates and the charge on the capacitor CVq = , we write for a 

discharging capacitor ( ) ⎟
⎟
⎠

⎞
⎜
⎜
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f eVtV max . 

Example #8 – A Simple RC Circuit 

A 100 µF capacitor wired in a simple series RC circuit is initially charged to 10 µC and 

then discharged through a 10 kΩ resistor.   



a. What is the time constant of the circuit? 

b. What is the initial current that flows? 

c. How much charge is left on the capacitor after 1 time constant? 

d. What is the current after 1 time constant? 

e. How much charge is left on the capacitor after 3 time constants have elapsed and 

what current is flowing then? 

Solution -  
a. The time constant is the product of the resistance and the capacitance, or 1.0s. 
b. The initial current that flows is found from Ohm’s Law 
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c. After 1 time constant we have ( ) CC
e

CeQsQ . s
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d. The current that flows after one time constant is 
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e. After 3 time constants we have 
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and the current that is flowing is 
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Example #9 – The Defibrillator  

The immediate cause of many deaths is ventricular fibrillation, an uncoordinated 

quivering of the heart as opposed to proper beating. An electric shock to the chest can 

cause momentary paralysis of the heart 

muscle, after which the heart will sometimes 

start organized beating again. A defibrillator 

is a device that applies a strong electric shock 

to the chest over a time interval of a few 

milliseconds. The device contains a capacitor 

of several microfarads, charged to several thousand volts. Electrodes called paddles, 

about 8 cm across and coated with conducting paste, are held against the chest on 

both sides of the heart. Their handles are insulated to prevent injury to the operator, 



who calls “Clear!” and pushes a button on one paddle to discharge the capacitor 

through the patient’s chest. Assume that an energy of 300 J is to be delivered from a 

30.0-µF capacitor.  

a.  To what potential difference must it be charged?  

Consider the following, a defibrillator connected to a 32 µF capacitor and a 47 kΩ 

resistor in a RC circuit.  The circuitry in this system applies 5000 V to the RC circuit 

to charge it.   

b.  What is the time constant of this circuit? 

c.  What is the maximum charge on the capacitor? 

d.  What is the maximum current in the circuit during the charging process? 

e.  What are  the charge and current as functions of time? 

f.  How much energy is stored in the capacitor when it is fully charged? 

Solution –  

a. The energy stored in this system is given fromU =
1
2

C∆V 2 so that the potential difference 

is 
  
∆V =

2U
C

=
2 300 J( )

30 × 10−6  C V
= 4.47 × 103  V  

b. The time constant is given as . sFRC 5.110321047 63 =××Ω×== −τ

c. The maximum charge on the capacitor is the product of the capacitance and the 

maximum voltage, which is 

CVFCVQ 160.050001032 6
maxmax =××== −  

d. The maximum current is given from Ohm’s Law 
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e. The charge and currents are thus given 
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f. The maximum amount of energy stored when the capacitor is fully charged 

is JVQ
C

QCVE 400
2 maxmax2
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Example #10 – How Many Lightning Strikes in a typical day 

The Earth’s atmosphere is able to act as a capacitor, with one plate the ground and the 

other the clouds and in between the plates an air gap.  Air, however, is not a perfect 

insulator and can be made to conduct, so that the separation of charges from the cloud to 

ground can be bridged.  Such an event is called a lightning strike.  For this question, we’ll 

model the atmosphere as a spherical capacitor and try to calculate the number of lightning 

strikes that happen every day.  First, let’s assume that the clouds are distributed around 

the entire Earth at a distance of 5000 m above the ground of area 4pR2
Earth, where REarth = 

6400km.  

a.  What is the resistance of the air gap? 

Next we need to calculate the capacitance of the Earth-cloud capacitor.  Here we will 

use the fact that the capacitance 
V

QC
∆

=  and we’ll calculate ∆V.  Assuming that we 

have a spherical charge distribution
r
QkV , so that ∆V is the difference in potential 

between the lower plate (the Earth’s surface) and the upper plate (the clouds) and that 

in a typical day, 5x10

=

5 C of charge is spread over the surface of the Earth.  

 b.  What is ∆V? 

c.  What is the capacitance of the Earth-cloud capacitor? 

Since the accumulated charge will dissipate through the air, we have a simple RC 

circuit. 

d.  What is the time constant for this discharge that is spread over the whole surface 

of the earth? 

Experimentally it is found that for each lightning strike about 25 C of negative charge 

is delivered to the ground. 

e.  What is the number of lightning for this amount of charge? 

f.  Approximately how long would it take the Earth-cloud capacitor to discharge to 

0.3% of its initial amount? 

 So to answer the question of how many lightning strikes per day, we know that we 

get part e number of strokes in part f amount of time. 

 g.  How many lightning strokes per day? 



 

 Solution -  

 a. The resistance of the air-gap is given 

as ( ) ( ) Ω=
×

×
Ω×== 291

104.64
105103 26

3
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m
mm

A
LR

π
ρ . 

 b. Assuming that the Earth-cloud system can be modeled as two spherical charge 

distributions separated by a fixed distance, we find the difference in potential to be 

V
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C
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C

Nm

upperlower
upperlower

559 1088.4
5000
11105109 2

2 ×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−××××=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−=∆ . 

 c. The capacitance is therefore F
V

C
V

QC 03.1
1088.4

105
5

5

=
×

×
=

∆
= . 

 d. The time constant is the product of the resistance and capacitance of the circuit.  

Thus the time constant is sFRC 2.29803.1291 =×Ω==τ . 

 e. For each lightning strike, 25C of charge is delivered.  Thus the number of 

lightning strikes is the total charge divided by 25 C per strike, or 20,000 strikes. 

 f. To calculate the time, we use the equation for a discharging capacitor.  

( ) hrsteeQtQ s
t

RC
t

48.03.1732003.0 2.298
max ==→=→=

−−
. 

 g. So we get 20,000 strikes every 0.48hrs, or 41,667 strikes per hour.  Thus in 24 

hours we get about 1,000,000 strikes.  This value, even if only approximate, is not far 

from the observed number of about 1 million per day!! 

 

Capacitors in Series and Parallel 

Capacitors in Series 

 In an analogy with resistor circuits, we could place capacitors in combination and 

calculate the equivalent capacitance of the circuit.  As or first problem, we will place two 

capacitors, with capacitances C1 and C2 in series with each other and this combination in 

series with a single battery as shown in the diagram below.   
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To calculate the equivalent capacitance of the capacitors in series we recognize 

that a time dependant current will flow and a charge of magnitude +Q will accumulate on 

the leftmost capacitor plate of C1 which is connected to the positive terminal of the 

battery.  An equal magnitude of negative charge will then appear on the rightmost 

capacitor plate of C2 because it is connected to the negative terminal of the battery.  In 

between these two extremities, the circuit has to remain uncharged since the inner two 

plates are connected by a wire, and any charge on those plates would immediately 

neutralize each other.  Thus we have in essence one large capacitor formed by the outer 

most plates.  The potential difference across the combination, by Kirchhoff’s Rule, must 

sum to the potential difference of the battery.  Thus we 

have ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=+=

212

2

1

1 11
21 CC

Q
C
Q

C
QVVV for the circuit.  Defining the inverse of the 

equivalent capacitance to be

CCB

21

111
CCCeq

+= for two capacitors wired in series.  If there 

were more than two capacitors in series we could extend the analysis and we would find 

that for N capacitors wired in series the equivalent capacitance is simply ∑
=

=
N

i ieq CC 1

11 .  

Thus we see, in analogy with resistors, that capacitors in series add like resistors in 

parallel. 



Capacitors in Parallel 

Of course we could have wired these two capacitors in parallel with each other.  Suppose, 

now that we place the two capacitors, with capacitances C1 and C2 in parallels with each 

other and this combination in parallel with a single battery as shown in the diagram 

below.   

VB
C1 C2

A 

+Q1 +Q2

+Q 
 

 

 

 

 

To calculate the equivalent capacitance of the capacitors in series we recognize 

that a time dependant current will flow, but at any interval of time, a total charge +Q will 

arrive at the junction labeled A, and a charge Q1 will be deposited on capacitor C1 while 

charge Q2 will be placed on capacitor C2, such that Q = Q1 + Q2.  However we know that 

elements in parallel have the same potential drops across them, so the potential drop 

across capacitor C1 is simply the potential difference of the battery, as is the case for the 

potential drop across capacitor C2.  Using the fact that the potential drops across the 

capacitors is the same and that the charge entering the junction A must equal the sum of 

charge leaving the junction, we have ( )VCCVCVCQQQ 21221121 +=+=+= .  Again we see 

that if two capacitors are in parallel we define the equivalent capacitance to be the sum of 

the individual capacitances,C 21
CCeq += .  If there were more than two capacitors in 

parallel we could redo the analysis and we would find that for N capacitors wired in 



parallel the equivalent capacitance is simply .  Thus we see, in analogy with 

resistors, that capacitors in parallel add like resistors in series. 

∑
=

=
N

i
ieq CC

1

Example #11 - An Example of Capacitors in Series and Parallel 

A simple RC series circuit has a 100 µF capacitor. 

a. If the time constant is 50 s, what is the value of the resistor? 

b. Suppose that a second identical resistor is inserted in series with the first.  What is 

the new time constant of the circuit? 

c. Suppose the second identical resistor is placed in parallel with the first resistor, 

still connected to the capacitor.  What is the new time constant in this case? 

d. Suppose that we use the single resistor from part a, but now a second identical 

capacitor is connected in series with the first.  What is the new time constant of 

the circuit? 

e. Suppose that we use the single resistor from part a, but now a second identical 

capacitor is connected in parallel with the first.  What is the new time constant of 

the circuit? 

Solution –  

a. The resistance is given from Ω×=
×

==→= −
5

6 105
10100

50
F

s
C

RRC ττ . 

b. The equivalent resistance for these two resistors in series is the sum of the 

individual resistances, or 1x106 Ω and the new time constant is 

sFCRseriesseries 10010100101 66 =××Ω×== −τ . 

c. The equivalent resistance for these two resistors in parallel is the reciprocal of the 

sum of the reciprocals of the individual resistances, or 2.5x105 Ω and the new 

time constant is . sFCRparallelparallel 2510100105.2 65 =××Ω×== −τ

d. The equivalent capacitance for these two capacitors in series is the reciprocal of 

the sum of the reciprocals of the individual capacitances, or 5.0x10-5 F and the 

new time constant is . sFRCseriesseries 25100.5100.5 55 =××Ω×== −τ



e. The equivalent resistance for these two capacitors in parallel is the sum of the 

individual capacitances, or 200x10-6 Ω and the new time constant is 

sFRCparallelparallel 10010200100.5 65 =××Ω×== −τ . 

 

The Cell 

 As one final example, we will investigate the cell as a model of electrical 

conduction.  Flow of charge in the human nervous system gives us a means of 

investigating the world around us, communication in the body, as well as control of 

movement of the body’s systems.  In the treatment that follows we will make some 

simplifying assumptions so that we can apply our physical principles to understand 

conduction within the nervous system, knowing that the complete description is very 

complex and beyond the scope of this book.  To start discussing electrical conduction, we 

need to have a structure that will propagate the electric signal and this structure is the 

neuron.  A simplified sketch of a neuron is shown on the 

right. 

 Neurons are living cells of unusual shape.  There 

are three types of neurons.  Sensory neurons bring electric 

signals from or to the extremities (hands, eyes, skin, etc.) 

and to the central nervous system.  Motor neurons bring 

signals from the central nervous system to muscles and 

cause the muscle to contract, while the interneuron 

transmits signals from neuron to neuron.  Information 

comes in to the neuron via synaptic connections at the dendrites (or by some electrical, 

chemical, or physical stimulus.)  The cell decides whether or not to send an action 



potential down the length of the neuron, along the axon.  The axon of neurons may be 

myelinated or unmyelinated and this affects how the electrical signal propagates down 

the axon, or the body of the neuron.  The neuron shown above is myelinated, or the axon 

is covered with a myelin sheath, except at special points called the Nodes of Ranvier.  

The signal propagates from the dendrites down the axon and the signal is transmitted 

across a synapse with the aid of chemicals called neurotransmitters, which will not be 

discussed. 

 The neuron is made up of cells and before any signal propagation is initiated, the 

cell and the neuron are in a resting state.  A stimulus is needed to start the signal 

propagation from cell to cell down the axon.  Let’s take a look at a typical cell and see 

how information is processed and how this information can be transmitted from cell to 

cell.  This process is called the firing of an action potential, and will eventually be 

propagated along the axon of the neuron.   

In order for an action potential to be initiated, the stimulus has to be above a 

certain intensity or threshold.  A cell is constructed so that the intracellular fluid is 

separated from the 

extracellular fluid by a 

membrane, usually formed 

of proteins.  This cell 

membrane is semi-

permeable to different sizes 

of ions and the charges are exchanged across the cell wall by a mechanism called the 

sodium-potassium pump, which is a protein that spans the membrane.  This mechanism is 



complicated, but the sodium-potassium pump uses energy in the form of ATP (adenosine 

tri-phosphate) to move ions across the membrane against their concentration gradient. A 

concentration gradient exists due to concentration differences that exist across the cell 

wall.   This particular pump, the Sodium-Potassium ATPase, pumps two potassium ions 

into the cell for every three sodium ions it pumps out.  The actual mechanism will not be 

investigated at any deeper level than what has just been presented.  We will make 

references to the sodium-potassium pump when we talk about signal propagation down 

the axon, from cell to cell. 

 The cells are surrounded by many ions that are in an electrically neutral fluid and 

these ions are able to diffuse into and out of the cell across the cell membrane.   The main 

ions that are found in the cellular fluid are usually sodium (Na+), potassium (K+) and 

chlorine (Cl-,) and is shown below.  There are large differences in the concentrations of 

each ion and these concentration gradients produce a potential difference across the cell 

membrane and these potentials, called resting potentials outsideinsideresting VVV −=∆ , are 

usually in the range of -60 mV to -90 mV.  Typical intra- and extracellular concentrations 

are given in the table below.  The cell membrane is selectively permeable with chlorine 

ions and to a lesser degree potassium ions able are able to diffuse across the membrane, 

while sodium ions cannot flow.    From the table of ion concentrations, we see that on 

average, the potassium ions will tend to diffuse out of the cells in the direction of the 

concentration gradient, while the chlorine ions will tend to diffuse into the cell.  The 

cellular fluid is electrically neutral and the charges tend to attach themselves to the cell 

wall due to their mutual electrostatic attraction across the membrane, which is on the 

order of 10-8m in thickness.  This produces a dipole layer across the cell membrane and 



an associated electric field on the order of m
V

m
V

r
VE 5

8

3

1070
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×
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∆
∆

−= −

−

pointing 

into the cell.  As charge accumulates on the inner and outer layers of the cell membrane, 

it becomes harder for charge to flow across the membrane and equilibrium is reached 

when the tendency to diffuse due to the concentration gradient is balance by the potential 

difference across the cell.  In cells we see that the higher the concentration gradient that 

exists across the cell membrane, the higher the resting potential difference that will be 

measured across the cell.   

In response to a stimulus, the cell can conduct ions across the cell membrane and 

this signal can be propagated from cell to cell along the axon, and the signal that 

propagates is called an action potential, and is a rapidly changing potential difference 

across the cell membrane, shown below.  A stimulus will cause the sodium-potassium 

pump to operate and sodium channels will open in the cell membrane in response to the 

stimulus.  These channels allow ions to pass through the membrane and can be opened 

and closed (called gating) through one of 

several different mechanisms as shown on 

the right.  Since there is a higher 

concentration of sodium ion outside of the 

cell wall, sodium will tend to diffuse into the cell.  The electrical potential measured 

across the cell wall changes to approximately +40 mV, and this depolarizes a local region 

across the cell wall. Depolarization causes potassium channels to immediately open and 

potassium ion diffuse out of the cell. This reestablishes the initial ion concentration and 

electrical potential of approximately -60 mV and repolarizes the cell, and during this 

time, about one millisecond, the sodium and potassium channels cannot be opened by a 



stimulus.  This single action potential acts as a stimulus to neighboring proteins (and 

eventually the neighboring cells) and initiates an action potential in another part of the 

neuron, due to the changing potential in the neighboring portions of the cell.   Thus we 

can also define one action potential as the change in potential difference across the cell 

membrane from its resting state  to the cell firing (rapidly depolarizing and repolarizing) 

and returning to its resting state.  

This will ultimately produce a wave of action potentials that travel from cell to 

cell (depolarizing and repolarizing the cell) from the dendrites all the way to the axon 

terminals, where at the axon terminal the electrical impulse is converted to a chemical 

signal.    This chemical or neurotransmitter crosses the synapse between adjacent neurons 

and initiates an action potential on another neuron.  The action potential activates a 

calcium channel and doubly ionized calcium (Ca++) diffuses into the neuron.  The 

presence of the calcium ion causes vesicles to fuse with the cell membrane and through a 

process called exocytosis, neurotransmitters (the chemicals) are released into the synapse.  

The neurotransmitters will diffuse across the synapse and bind to receptors cells on 

another neuron and this will in turn causes special sodium channels to open and an action 

potential is initiated in the next neuron, and we conduct an electrical signal from neuron 

to neuron.    

Now, we have seen how the cells and neurons can conduct an electrical signa.  

Next we would like to calculate the capacitance of a typical neuron (since we have a 

separation of charge across cells of the neuron) and try to estimate how fast a signal can 

propagate along an axon. 

 



Example #12 – The capacitance of an axon 

Suppose that we have an axon that is 10 cm long and has a radius of 10 µm.  

Given a typical membrane thickness of about 10-8 m and a dielectric constant for cellular 

fluid of 3, what is the capacitance of the axon? 

Solution – Assuming that the axon can be modeled as a cylindrically shaped capacitor 

with equal and oppose charges on each side, we have the plate thickness of d = 1x10-8 m.  

The cross sectional area of the plates is given as the product of the circumference of the 

axon and the length of the axon .  We 

calculate the capacitance from 
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Example #13 – Concentration changes due to an action potential 

Suppose that we use the axon in Example #12, by what factor does the concentration of 

sodium ions in the cell change due to the action potential firing? 

Solution – We assume from the reading that the potential change from the resting state (-

70 mV) to the active state when the action potential fires (+40 mV) to calculate the 

amount of charge that is moved across the cell membrane.  Thus we have a difference in 

potential of 110 mV and using the capacitance calculated in Example #7, we have for the 

amount of charge .  The charge on a 

singly ionized sodium atom is 1e

CVFCVQ 1138 1087.110110107.1 −−− ×=×××==

- and dividing the amount of charge that flows by one 

elementary charge we have the number of sodium ions that flows 

as +
−

−
− ×=

×
×× Na

C
eC 8

19
11 102.1

106.1
11087.1 .  Next we need to know the initial 



concentration of sodium ions in the cell.  Looking at table above, we see 15 mol/m3 for 

the concentration of sodium ions inside of the cell.  Thus we have 

33
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mol1
1002.615

m
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m

Na +×
×

×
+

 in ( ) 311262 1014.31.01010 mmmlr −− ×=×××= ππ  

(the volume of the neuron), or a concentration of 

+− ×=××× + Nam
m

Na 1424311 1084.21003.91014.3 3 .  The change in the concentration of the 

sodium ions is 7
14

8

104
1083.2
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+

+

×≈
×
×

Na
Na , or a change of 4 parts in 10 million, probably a 

concentration change that would not be measurable. 

 

Example #14 – The current flow across a Cell Membrane due to Na+ Flow 

How much current flows during one action potential for the concentration calculated in 

example #13 if the action potential lasts for 1 millisecond? 

Solution – The current is the charge that flows divided by the amount of time it takes the 

charge to flow across the cell wall.  Thus we have 
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 Example #15 – Propagation Speed along an Axon 

A neuron is stimulated with an electric pulse. The action potential is detected at a point 

3.40 cm down the axon 0.0052 s later. When the action potential is detected 7.20 cm from 

the point of stimulation, the time required is 0.0063 s. What is the speed of the electric 

pulse along the axon and why are two measurements needed instead of only one? 

Solution - The speed is the change in position per unit time. 



v =
∆x
∆t

=
7.20 × 10−2 m − 3.40 × 10−2 m

0.0063s − 0.0052s
= 35m s  

We need two measurements because there may be a time delay from the stimulation of 

the nerve to the generation of the action potential. 

 

Example #16 – Energy Transmission in an Action Potential 

How much energy is required to transmit one action potential along the axon of Example 

#12, where the energy to transmit one pulse is equivalent to the energy stored by charging 

the axon capacitance? What minimum average power is required for  neurons each 

transmitting 100 pulses per second? 

410

Solution - The energy required to transmit one pulse is equivalent to the energy stored by 

charging the axon capacitance to full voltage.  In Example #12, the capacitance is 

approximately at , and the potential difference is about 0.1 V. 81.0 10 F−×

E = 1
2
CV 2 = 0.5 10−8 F( ) 0.1V( )2 = 5 × 10−11 J  

The power is the energy per unit time, for 10,000 neurons transmitting 100 pulses each 

per second. P =
E
t
=

5 × 10−11 J neuron( ) 1.0 × 104 neurons( )
0.01s

= 5 × 10−5 W  

 

Example #17 – The Power in the Sodium Pump 

During an action potential,  ions move into the cell at a rate of about +Na

.smmol103 27 ⋅× −  How much power must be produced by the “active  pumping” 

system to produce this flow against a 

+Na

mV-30+  potential difference? Assume that the axon 

is 10 cm long and m 20 µ  in diameter. 



Solution - The power is the work done per unit time.  The work done to move a charge 

through a potential difference is the charge times the potential difference.  The charge 

density must be multiplied by the surface area of the cell (the surface area of an open 

tube, length times circumference) to find the actual charge moved. 

Solution - The power is the work done per unit time.  The work done to move a charge 

through a potential difference is the charge times the potential difference.  The charge 

density must be multiplied by the surface area of the cell (the surface area of an open 

tube, length times circumference) to find the actual charge moved. 
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