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Introduction

What is a Waveguide?
A waveguide is a structure that is used to direct the propagation of energy in the form of an electromagnetic 
wave along a specified path. Typical waveguides have been developed to guide the propagation of radio 
waves, microwaves, visible light, and recently x rays. The simplest type of waveguide, the planar metallic 
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waveguide, is generally constructed from two semi-infinite planar metallic sheets separated by a vacuum 
gap. In the standard optical waveguide terminology, the vacuum gap is usually called the core and has an 

index of refraction denoted by n , and the two metallic plates comprise the cladding with index of 

refraction denoted by n . One could replace the metallic sheets with two dielectric plates constructed 
from, for example, borosilicate glass shown in figure 1.1 below. Of course other guiding structures are 
possible. One could use instead of the planar geometry, a cylindrical geometry in the form of a metallic rod, 
dielectric rod or hollow glass cylinder. The hollow glass cylinder is shown in figure 1.2 below. 

Semi-infinite planar dielectric waveguide of width 2a, where a is the half-thickness of the guide, oriented 

in the -direction. The guide is constructed of borosilicate glass with index of refraction n  Between 

the glass is a vacuum with index of refraction n
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Cylindrical dielectric waveguide of internal diameter 2a. The typical construction for an optical fiber 

waveguide made out of borosilicate glass has index of refraction, for the glass, n .

The operating principle of most optical waveguides is based on the idea of total internal reflection. In order 

for total internal reflection to occur, n  < n , and the waveguide is called a step-indexed waveguide. 
An electromagnetic wave is guided by total internal reflection within the fiber core if its angle of incidence 

on the core-cladding boundary is less than the critical angle, , of the waveguide. , is defined from 
Snell's law and is given by

Most dielectric fibers, such as optical fibers and x-ray waveguides, are fabricated from fused silica glass (SiO

) of a high chemical purity. Slight changes in the refractive index are achieved by adding low 
concentrations of doping materials such as boron [Saleh]. For an x-ray waveguide hollow glass fibers made 
from borosilicate glass are usually used and the operating principle behind these waveguides is total external 
reflection. For an x-ray to be guided by total external reflection within the fiber core, for an x-ray waveguide 
termed the vacuum channel, its angle of incidence on the vacuum channel-glass boundary must be less than 

the critical angle, , of the waveguide. The critical angle, , is defined from Snell's law and is given by 
equation

In an ideal waveguide the propagation of energy would be done with no losses to the surrounding medium, 
the glass capillary. Real waveguides, of course, are only approximations to the ideal. 

History of the Waveguide
Probably the most widely known and used cylindrical waveguide today is the optical fiber. The development 
of the optical fiber spans a little more than a century. It might be said that the optical fiber is one of the 
important technological advances of the twentieth century. 
Waveguides were first studied at the turn of the twentieth century by Lord Rayleigh [Rayleigh] Thomson 
[Thomson], and Sommerfeld [Saleh]. They studied guided electromagnetic waves within perfectly 
conducting cylinders. The first theoretical description of mode propagation along a dielectric waveguide was 
apparently that of Hadros and Debye [Hadros and Debye] in 1910. In 1936, Southworth [Southworth] 
discovered the transmission of radio waves in hollow conducting waveguides. His report was accompanied 
by an article detailing the mathematical theory of waveguides by Carson, Mead, and Schelkunoff [Carson]. 
This eventually paved the way for dielectric rods as waveguides for microwaves, utilized by Chandler and 
Elsasse [Chandler]. 
The first dielectric waveguide studied at optical frequencies were glass coated fibers packed into assemblies 
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each a few microns in diameter with the adjacent fibers less than one micron apart [Kapany and Burke]. The 
glass fibers rely, as before, on total internal reflection of the light inside of the core of the fiber. In 1961, 
Snitzer investigated the types of modes carried on a cylindrical dielectric waveguide. It was found that one 
could limit the number of modes which are supported by a guide by using a step-indexed fiber, where the 

fractional refractive index change  defined by the relation

is small. In 1971, Gloge [Gloge] tried to simplify the theory of the cylindrical dielectric waveguide in the 
limit of optical frequencies. For a comprehensive treatment of optical fibers the reader is referred to the 
excellent book by Marcuse [Marcuse]. 
Soon after researchers began to comment on the possibility of using waveguides to guide x rays. The 
dimensions of the waveguide would need to be very small and the most common configuration for these x-
ray waveguides is the planar thin-film waveguide. These attempts have met with varying amounts of 
success. 

Capillary Optics
The field of capillary optics uses glass capillary tubes to take advantage an x-ray having an index of 
refraction less than unity in glass. The small difference between the indices of refraction produces a step-
indexed fiber and ensures total external reflection at the vacuum channel-glass interface. These bundles of 
capillary tubes are typically 0.5 millimeters in diameter and 120 millimeters in length. Each single capillary 
channel is approximately 5-50 microns in diameter and is constructed of mainly borosilicate glass, which is 
a high purity silica glass that has been doped with boron. The critical angle for total external reflection from 
borosilicate glass is on the order of a few milliradians. These x-ray optics, as they are now called, were first 
suggested by Kumakhov [Kumakhov] as a means of controlling the size and shape of an x-ray beam and are 
being studied for a wide variety of applications, including x-ray lens systems for use in x-ray astronomy, the 
production of collimated x-ray sources for materials analysis, and in industrial and medical radiography. 
Studies and analysis of polycapillary optics have be performed for hard x-rays (see for example the paper by 
Lei Wang, et al [Wang]) whose energies are in the range of 10 to 80 keV. Extensive experimental studies of 
the effects of roughness of the glass surface as well as some curvature (or bending) of the waveguide have 
been carried out. The experimental results were used to assign values to the various parameters involving the 
roughness and curvature of the waveguide model. A theoretical roughness model was proposed by Kimball 
and Bittel [Kimball and Bittel], based on the work of Vinogradov, et al [Vinogradov] , was used to 
determine whether the effects of surface roughness was causing lower transmission rates at higher energies. 
It was found that the roughness was not the cause, but rather waviness of the surface on much larger scales 
was at least partially to blame. 
These present studies, however, do not include waveguide effects, such as diffraction. The computer 
simulations in use at the present time are based on "geometrical optical (ray tracing) methods." Since the 
diameter of the capillary is much larger than the wavelength of the x rays being used, geometric optics 
proves quite accurate. Older experiments involving capillary optics use incoherent incident beams with large 
angular spreads. In such cases, calculations that involve geometrical optics give results that are essentially 
identical to those found with wave methods. As the waveguide diameter shrinks and with future experiments 
utilizing second and third generation x-ray sources, waveguide effects may become observable and useful. 
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The highly collimated x-ray sources and the small fiber size may allow one the opportunity to view some 
interesting waveguide effects such as diffraction. 

The incident wave has associated with it a wave vector, , where .  is the wavelength of the 

incident wave and the direction of wave propagation defines the direction of . If the incident wave makes 

an angle  with respect to the symmetry axis of the waveguide, one can imagine the wavelength to have 

longitudinal and transverse "components", where the transverse component  As the angle that 
the incident beam makes with respect to the symmetry axis of the waveguide becomes shallower, the 
transverse "component" of the wavelength would become larger. Even though the wavelength of the wave 
may be much smaller than the dimensions of the waveguide, the transverse "components" of the wavelength 
may become comparable to the dimensions of the waveguide and wave effects such as diffraction may 
become evident. 

X-ray Waveguides
There are groups working on the design and implementation of x-ray waveguides. Most of the work in the 
last ten to fifteen years has been in the study of primarily planar metallic and dielectric waveguides. In the 
late 1980's and early 1990's, Feng, Sinha, et al [Feng and Sinha] - [Feng and Fullerton] have developed 

planar waveguides made out of SiO /polyimide/Si. Their method was to start with an optically flat silicon 
wafer, deposit a roughly 1230Å polyimide film on the top of the silicon wafer,and then evaporate a roughly 

380Å thick layer of SiO  on the top of the polyimide film. Feng, Sinha, et al were able to obtain an increase 
in the photon flux at certain energies by a factor of 20. They also determined the probability of mode 
mixing, which they attributed to rough surface scattering. In addition, they studied the Fraunhoffer 
diffraction pattern for individually excited modes that exited the waveguide along a cleaved crystallographic 

axis of the silicon. They found that the angular divergence of the beam was on the order of 10 rad and that 

the modes were separated by roughly 60 rad allowing for single mode excitation. 
There have been many modifications on this basic approach. Zheludeva, Kovalchuk, et al [Zheludeva] 
investigated planar waveguides constructed out of mainly alternating carbon and nickel layers and glass 
using the carbon as a guiding layer because of its low absorption coefficient. Zheludeva, et al used ultra-thin 
metal layers to measure the excitation of different waveguide modes as a function of the angle of incidence 
of the x-ray beam. Jark, Di Fonzo, et al [Jark], [Jark1], used a similar structure of alternating nickel and 

carbon layers and SiO . Jark, et al used an incident beam with an angular divergence approximately 8 rad 
and produced a 13 keV exit beam with one dimension as small as 0.137 microns. There are problems 
associated with these waveguides. While carbon (or any organic material) may have a low absorption 
coefficient, the absorption coefficients are not low enough to prevent large losses in x-ray intensity. These 
waveguides are on the order of 1 cm long; for many practical applications, the waveguides would need to be 
longer. 
Liu and Golovchenko [Golovchenko], [Golovchenko1] have been studying x-ray waveguides of another 
variety, namely x rays that undergo repeated reflections from a single curved surface. These are called 
whispering galley modes and were first investigated for acoustic waves by Lord Rayleigh [Rayleigh1] more 
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than a century ago. Whispering-galley optics relies on the ability of a concave surface (a mirror) to act as a 
waveguide. In essence the x rays undergo many small grazing incidence reflections but the net result is to 
deflect the x-ray beam through a large total angle. Liu and Golovchenko using an incident beam (with 

angular divergence of about 16 ) were able to measure the transmittance as a function of curvature. 
Here they have the fundamental mode being detectable over the length of the waveguide and the higher 
order modes are attenuated by tunneling of the mode into the mirror. This type of arrangement has been 
suggested for the construction of resonant cavities for x rays [Braud] - [Vinogradov1]. 
The theory for scalar waves was studied in the thesis of Barcomb [Barcomb]. In his doctoral thesis Barcomb 
showed that he could use the approximation that the x rays could be treated as scalar waves, since the 

susceptibility for x rays incident in borosilicate glass was small ( ). He found that absorption 
effects are nearly nonexistent since the x-ray modes penetrate very little into the glass and thus propagate 
distances of tens of kilometers. Barcomb also studied the excitation of various modes as a function of 
incident angle of an externally directed plane wave. He found that for plane waves incident with energy 8 
keV on a planar waveguide (with a gap of 10 microns) as much as 80% of the incident energy appears as the 
fundamental mode, while for a cylindrical waveguide (with diameter 10 microns) the excitation was on the 
order of 70%. Thus a single mode fiber can be studied provided a sufficiently collimated incident x-ray 
beam can be used. 

Outline
In this thesis, the vector nature of x rays is incorporated into a waveguide model. The goal of this work is to 
provide a theoretical description for the propagation of x rays along a glass capillary waveguide. The 
objectives are four-fold: 

●     to understand the individual modes, how modes are excited at the waveguide entrance, 
and how modes emerge at the waveguide exit, 

●     to understand the distribution of fields and polarizations of the various modes, 
●     to understand the effects of photoelectric absorption and surface roughness on the 

propagation of the x rays in the waveguide, 
●     to understand whether it is possible and how to accomplish selective excitation of 

individual modes. 

To accomplish the above objectives, a detailed description for the launching of the various modes that the 
waveguide can support will be given. Chapter 2 gives the background on the interaction of x rays and 
matter, the laws of reflection and refraction and the Fresnel equations. 
In chapter 3 the modes of the electromagnetic field that are sustained within a straight cylindrical dielectric 
x-ray waveguide are investigated. Maxwell's equations are the basis for calculation of the electric and 
magnetic fields that constitute the transverse distributions, or modes, in the guiding region of the waveguide. 
These modes are the eigenfunctions of the waveguide, and the corresponding eigenvalues could be 

characterized by the propagation constant in the -direction, the longitudinal component of the incident 

wave vector, . Exploiting the cylindrical geometry, the hollow glass capillary will be shown to support 
many circular hybrid modes of propagation for the x rays. Modes in metallic microwave guides are 
transverse magnetic or transverse electric, but in dielectric waveguides this is not the case. In a dielectric 
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waveguide the modes are hybrid in the sense of resembling superpositions of transverse magnetic and 
transverse magnetic modes. These hybrid circular modes will be combined to form a new set of linearly 
polarized modes. These linearly polarized modes will be studied in great detail, including the study of such 
effects as energy loss mechanisms due to photoelectric absorption and due to surface roughness on the 
propagation of the x-ray down the waveguide. 
Chapter 4 explores excitation at the waveguide entrance. Here an externally directed plane-polarized wave 
will be used to excite a set of linearly polarized modes that propagate down the longitudinal axis of the 
waveguide. One will see that it is very possible to launch a single mode in the waveguide. This same 
approach could be used for other types of incident waves, namely a circularly polarized mode incident at the 
waveguide entrance. 
In chapter 5 how the x rays exit the waveguide will be studied. The problem is similar to the Fraunhofer 
diffraction by a circular aperture, except that instead of an incident plane or spherical wave the incident 
fields are the linearly polarized modes propagating along the waveguide. The standard calculation of the 
vector diffracted fields is based on the vector analogue of the Kirchhoff diffraction formula and is very 
difficult to apply except in all but the simplest geometries. The interested reader may wish to consult, for 
example Jackson[Jackson] and Born and Wolf[Born and Wolf], for the standard way of calculating these 
vector diffracted fields. This difficulty has inspired one to seek an alternative approach to diffraction. In this 
chapter, a new approach to vector diffraction theory is proposed. It is inspired by an asymptotic form of the 
reciprocity theorem (ART) that has been found useful in a variety of other x-ray emission, diffraction and 
scattering problems ([Caticha].) 
In chapter 6 the effects of surface roughness on the propagation of modes is studied. Since the effect of 
roughness is to scatter x rays away from the guided modes, it is a loss mechanism. A simple way to take this 
loss into account is by including it, just as other loss mechanisms such as photoelectric absorption, into an 
effective imaginary part for the dielectric susceptibility. The resulting model is compared to and shown to 
agree with the results of Kimball and Bittel [Kimball and Bittel]. 
Chapter 7 includes some concluding remarks on this thesis, as well as some ideas for future directions of 
research for glass capillary x-ray waveguides. Some future directions will include studies involving curving 
and/or tapering of the waveguide as well as the possibility of a non-diffracting Bessel beam. 

The Reflection of X rays

Introduction
In this chapter the interactions of x rays and matter will be investigated. It will be shown how the dielectric 
susceptibility for borosilicate glass is calculated on the basis of fractional atomic weights of the constituent 
elements that make up the glass fiber. The phenomena of total internal and total external reflection will be 
explained. The idea of Transverse Electric and Transverse Magnetic Modes of a waveguide will be briefly 
introduced. 

Susceptibility for X rays
The wave properties of all electromagnetic phenomena are obtained from Maxwell's equations:

file:///C|/Documents%20and%20Settings/labrakes/Desktop/thesis%201/Doctoral%20Thesis%20Scott%20LaBrake.htm (7 of 101)9/9/2004 5:47:33 AM



Doctoral Thesis Scott LaBrake.htm

The waveguide will be made out of low atomic density borosilicate glass, which is assumed to be source free 

(  and ) and non-magnetic ( ). Since the borosilicate glass is source free one can 
write:

where  is the dielectric constant and may be written in terms of the susceptibility of the material,  as 
follows:

Assuming electric and magnetic fields are monochromatic waves of frequency , they can be expressed in 
the following form:

where  is a position vector. Maxwell's equations thus become:
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Wave equations on  and  can be found by taking the curl of equation . With the help of equation 
one finds:

where the vector identity

has been used. An analogous expression for the magnetic field is obtained by taking the curl of equation 
with the help of equation .

The operator  in equations and is defined in the usual way. Substituting equation into equation for 

 produces a wave equation governing  namely

In an analogous manner, substitution of equation in to equation for  yields a wave equation 

governing .

For x rays (as well as any electromagnetic radiation), the wave number  is the magnitude of the 
wave vector in vacuum. In the borosilicate glass, the wave vector can be related to the wave vector in 
vacuum through:

where  is the index of refraction of the medium (in this case the borosilicate glass) through which the x 
rays travel. When the frequency of an electromagnetic wave is much higher than the highest resonant 

frequency of a given material, as is the case for an x-ray, the dielectric constant  of the material becomes 
easy to calculate. From Jackson [Jackson] :

 is the wave frequency and  is the plasma frequency, given by:

and  is the electron density of the material. Combining equations , , and , one finds that the susceptibility 
may be written as
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The susceptibility is thus proportional to the electron density of the material, where the electron density may 
be found by taking the weighted average over all of the constituent molecules of the borosilicate glass. This 

produces susceptibilities that are negative and generally on the order of  to . To calculate the 
approximate susceptibility for borosilicate glass, commonly known as Pyrex, consider the weight fractions 
of the various components as shown in table 2.1 above. 
Component Weight Fraction

Boron

Oxygen

Sodium

Aluminum

Silicon

Potassium

\caption{Weight fracitons by constituent elements for borosilicate glass.\label{key} } The density of 

borosilicate glass is  so that  eV. For Cu  x rays, keV; the 

susceptibility of the Cu  x rays in borosilicate glass, is calculated to be . Therefore, 
one can see that the dielectric constant very nearly equals unity. 

Reflectivity and Polarization
When an electromagnetic wave travels through vacuum, nothing much spectacular happens. However, when 
that same electromagnetic wave travels through matter, it may interact with the material through which it is 
propagating. Consider an electromagnetic wave that travels from one non-magnetic dielectric region, with 

dielectric constant  and permittivity , to another non-magnetic dielectric region, with dielectric 

constant and permittivity , as shown in figure 2.1 below. In material one the electromagnetic 

wave has wave vector  and in material two, the electromagnetic wave has wave vector . At the 
boundary between the two dielectric materials, part of the wave is reflected and part of the wave propagates 
into the second dielectric material, but with a different wave vector, due to the change in dielectric constants 
of the material. One uses Maxwell's equations to determine the relative amounts of the electromagnetic wave 

that are reflected and refracted at the interface. As seen in figure 2.1 below, wave vector  has magnitude 
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 and makes and angle  with respect to the normal to the interface. The incident electric field is 
given as:

The second wave is the refracted wave, traveling in the second non-magnetic dielectric material. Wave 

vector  has magnitude  and makes and angle  with respect to the normal to the interface. The 
refracted electric field is given as:

The third wave is the reflected wave, traveling in the original non-magnetic dielectric material. Wave vector 

 has magnitude  and makes and angle  with respect to the normal to the interface. The 
reflected electric field is given as:

Diagram showing the boundary between two dielectric media, with indicies of refraction n  and 

n  respectively. Wave vector  is incident on the boundary of medium 2 from medium 1. The 

reflected and refracted wave vectors,  and  are also shown.

The associated magnetic fields may be found using:
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where (inc, ref,refl), and , . Suppose that the normal to the interface is the direction and let the 

coordinate of the interface be located at . Since the boundary conditions have to be satisfied at all 
points on the interface and for all times, the phases of the waves must be equal at all points on the interface 

where the waves meet. Thus at :

Therefore these three wave vectors must be coplanar, or their respective dot products would never be equal. 
From equation and figure 2.1, one finds that

Since the incident wave is partially reflected at the interface,

and therefore it follows that

This result is called the law of reflection, and states that the angle of incidence equals the angle of reflection. 
Further, from equation ,

or

which is called Snell's law. The index of refraction,  is related to the dielectric constant of the material 
through:

Next, as a consequence of Snell's law, there is an angle, , called the critical angle such that:

In terms of the susceptibility of the material,

for . Since  is negative, n >n  This condition is satisfied for this step-indexed fiber, so equation 
is precisely the case for total internal reflection. 

In order to determine that relative amplitudes of the refracted and reflected waves,  and  
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respectively, boundary conditions must be imposed on  and . The boundary conditions are 

continuity of the normal components of  and , and the tangential components of 

 and . These boundary conditions are most easily handled by considering two 
separate polarizations of the wave, one parallel to the plane of incidence and one perpendicular to the plane 

of incidence (the plane that contains , , and .) The plane of polarization, by convention , is taken 
to be defined by the incident electric field vector. The orthogonal polarization, or perpendicular polarization, 
is termed the Transverse Electric (TE) polarization. [Saleh] Conversely, the parallel polarization is termed 
the Transverse Magnetic (TM) polarization, since the magnetic field is orthogonal to the plane of incidence, 
while the electric field is parallel to the plane of incidence. The results of applying the boundary conditions 

in these two cases are:For  parallel to the plane of incidence (TM polarization):

and

For  perpendicular to the plane of incidence (TE) polarization:

and
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Diagram showing the incident electric field, , parallel to the incident wave vector . The 

reflected and refracted electric fields,  and , are shown after interaction with the 
dielectric interface. The associated magnetic fields, directed out of the page, are also shown.

Diagram showing the incident magnetic field, , perpendicular to the incident wave vector . 

The reflected and refracted electric fields,  and , are shown after interaction with the 
dielectric interface. The associated electric fields, directed into the page, are also shown.

For x rays in vacuum,  incident on the borosilicate glass surface , where the 

susceptibility, , is negative. Since  is small  total external reflection will only occur for 

grazing incidence; that is, for angles of incidence near . Thus, equation can alternately be expressed in an 
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equivalent form:

where  and  refer to the angles that the incident and refracted rays make with the interface. The critical 
angle for total external reflection is then given by:

In terms of the susceptibility, the critical angle is thus:

Which for , can be approximated as:

The cosine term on the left hand side of equation can be expanded in a power series.

Which for grazing angles of incidence may be approximated as:

Comparing equations and , one finds that the critical angle for total external reflection in terms of the x-ray 
susceptibility of borosilicate glass.

where  found for Cu K  x rays incident in borosilicate glass has been used. Returning to equations for TE 
polarization,

and to equation for TM polarization,

Equations and are known as the Fresnel equations. For  equal to zero, there is no difference in the 

reflected amplitudes for the two polarizations. However, for  small but different from zero, there is a 
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small difference between the reflected amplitudes. 

Propagation of X rays in Cylindrical 
Waveguides

Introduction
Our study will be focused on three main areas. First, the waveguide modes will be derived and the manner in 
which these modes propagate along the longitudinal axis of the guide will be shown. The transverse electric 
and magnetic fields will be expressed in terms of the longitudinal electric and magnetic fields. Wave 
equations for the longitudinal electric and magnetic fields will be derived and solved by the technique of 
separation of variables. Next boundary conditions on the wave equation solutions will be imposed and the 
characteristic equation for the modes will be derived. It will be found for cylindrical waveguides that the 

modes have a radial dependence given by a Bessel function and an azimuthal dependence given by , 

where  is the order number of the mode. For lowest order modes, the  case, the modes will be 
found to resemble the so called TE (transverse electric) and TM (transverse magnetic) modes in the limit of 

small angles of incidence and  much smaller than unity. The higher order modes ( ) will be termed 
hybrid and be denoted by either EH (electric magnetic) or HE (magnetic electric) modes. Here it should be 
noted that the results obtained from the cylindrical model of the dielectric waveguide will mirror those of 
Gloge[Gloge] and Marcuse[Marcuse]. Marcuse and Gloge were primarily concerned with optical and 
microwave fibers. In dealing with x-ray guides, considerable simplifications will arise because all indices of 
refraction are close to unity. 
The second problem to be tackled is the transformation of the hybrid circularly polarized modes. These 
circularly polarized hybrid EH and HE modes will be superposed to form a set of linearly polarized or LP 
modes. 
Third, photoelectric absorption of the x rays by the waveguide will be studied. Losses due to photoelectric 
absorption will be calculated using the imaginary part of the dielectric susceptibility. The imaginary part of 

the wave vector will then be calculated and subsequently be used to calculate the  decay lengths for the x-

rays as they travel down the fiber. It will be found that the lowest order modes (the LP ) propagate on the 
order of 10 kilometers for higher energy x-rays, while for lower energy x rays, the modes will propagate 
hundreds of meters. This applies to guides with perfectly smooth walls. Surface roughness has an important 
contribution to loss in the waveguide. Surface roughness will be studied in chapter 6. 
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Cylindrical dielectric waveguide with diameter 2a. The waveguide is constructed out of borosilicate glass 

where the axis of the guide is usually taken as the -axis, or the longitudinal axis. In a cylindrically 

symmetric coordinate system, the radial direction, , has its origin on the -axis and extends outward from 

the center of the guide to the glass that forms the boundary of the waveguide, and the angular direction, , 

wraps around the -axis. 

A cylindrical dielectric waveguide is constructed of non-magnetic material, usually borosilicate glass. The 
waveguide has a hollow vacuum channel on the order of 5 microns in diameter, and the glass capillary 
extends radially to infinity. The axis of the guide is usually taken as the z-axis, or the longitudinal axis, and 
has a finite length on the order of say 10 centimeters. In a cylindrically symmetric coordinate system, the 
radial direction has its origin on the z-axis and extends outward from the core to the glass that forms the 
boundary of the waveguide, and the angular direction wraps around the z-axis. The various directions may 
be seen in figure 3.1 below. 

Derivation of the Waveguide Modes
The starting point in the analysis of the modes contained in any arbitrary electromagnetic guiding structure 
for example, a cylindrical dielectric x-ray waveguide, are Maxwell's equations given by equations through : 

Assuming that the material composition of the waveguide will be such that it is both source free  and 

 and non-magnetic . Thus  and  assume particularly simple expressions, 
namely

where the  is the dielectric constant and may be written in the form

where  is the susceptibility of the material. Let:
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Maxwell's equations thus become after cancelling the common  term:

The z-dependence of the E and B fields
The next step is to derive a wave equation that governs the electric and magnetic fields in equations and . 
This will be done in several steps. The first one will be to use the technique of separation of variables to 

determine the form of the -dependence of the electric and magnetic fields. Then the transverse components 
of the electric (magnetic) field will be expressed in terms of the longitudinal component of the electric 
(magnetic) field. Lastly a wave equation on the longitudinal electric (magnetic) field will be developed and 
continuing to use the separation of variables technique, solved for the final form of the longitudinal electric 
(magnetic) field. To search for solutions to equations through start by assuming that the electric and 

magnetic fields are separable and for brevity the electric field has the form:  
Taking the curl of equation and using equations and produces 

Substituting the form of  into equation produces after some algebra

where  has been used. Noticing that the right hand side of equation is a constant independent of  

and , the left hand side must also be a constant. Therefore, the -dependence of the electric and magnetic 
fields, is found to be
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Thus the electric and magnetic fields look like after inserting the -dependence

The Wave Equations for E  and B
Again, to derive wave equations that govern the longitudinal electric and magnetic fields, one must write the 
transverse fields in terms of the longitudinal fields. It will be easily shown from Maxwell's equations that the 
transverse electric fields may be expressed in terms of the longitudinal electric field. Analogously, 
expressions for the transverse magnetic fields will be shown to depend only on the longitudinal magnetic 

field. Maxwell's curl equations and become in component form:For the -direction:

For the -direction:

For the -direction:

The magnitude of the wave vector, in vacuum, is given in the usual way as . 
Further, the index of refraction may be related to the dielectric constant in the vacuum and in the glass as 
follows:
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Thus the transverse components may be solved for simultaneously from equations through . After some 
simple algebra the results are:

In order to find the longitudinal components, one returns to Maxwell's divergence equations, equations and . 
Utilizing equations and found above and after some simple algebra, the divergence of the electric field is:

Multiplying equation by the factor  and dividing by , produces:

Comparing equation and equation , one can see that:

where  is the transverse Laplacian operator defined by

and an analogous expression for B  has been derived on the basis of equations and . Equations and represent 
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the wave equations that govern the longitudinal electric and magnetic fields. 

The -dependence of the E and B fields
Next, to determine the form of the solutions for the electric and magnetic fields, one needs to know the 

azimuthal ( -dependence) and the radial ( -dependence) of the fields. To determine the form of the 
solutions for the longitudinal fields, one continues to use separation of variables. Thus to find solutions for 

equations and one lets the longitudinal components of  and  be given as

where  and  are assumed to be separable. Substituting equation into the wave equations yields

with a similar expression for . Rearranging,

Noticing that the left hand side of equation is a function of  only while the right hand side is a function of 

 only, it must be the case that equation is a constant, let it be defined as . Thus,

or,

Since  is the azimuthal dependence of the electric and magnetic fields, the solution has to be periodic 

with periodicity . Thus , and therefore  is any positive or negative integer, 
including zero. Thus the electric and magnetic fields have an angular dependence given by equation . 

The -dependence of the E and B fields
To determine the radial dependence of the field solutions, one returns to equation . Since equation was found 

to be constant, one may rewrite equation in terms of that same constant . Thus equation becomes
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Inside of the guide, in the vacuum channel, one can define a dimensionless quantity,  through

where  is the waveguide radius. Since  for small incident angles, this makes  in equation an 
effective angle of incidence. Further, within the glass walls of the guide, one can define a dimensionless 

quantity,  through

where  is proportional to an effective angle of refraction and the waves that  describes in the glass are 

evanescent waves. This implies that  will be positive when the angle of incidence with the glass is less 

than the critical angle. Thus inside of the vacuum channel, for  equation becomes

This is Bessel's differential equation. The solutions are Bessel functions of the first kind  of order 

, or Bessel functions of the second kind , of order , also called Neumann functions. Bessel 
functions exhibit the asymptotic behavior of a cosine function with a phase shift and an amplitude that 

decreases as . Additionally, , at  except for the  case, where . The 
first few Bessel functions are given in figure 3.2 above. 
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Plot of the Bessel Functions of the first kind, for orders  and .

The Neumann functions exhibit the asymptotic behavior of a sine function with a phase shift and an 

amplitude that decreases as . As , the solutions diverge. The first few Neumann functions are 
listed in figure 3.3 below. Thus for physically meaningful solutions, Neumann functions are rejected in favor 
of Bessel functions, and
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Plot of the Neumann Functions for the orders  and .

Therefore it follows that solutions to the longitudinal components are obtained by joining the solutions for R

, , and Z  as follows for  

In the glass , one has:

which is the modified Bessel differential equation. Its solutions are given by , which are modified 

Bessel functions of the first kind of order , or , which are modified Bessel functions of the 

second kind of order . Modified Bessel functions of the first kind, , exhibit the asymptotic 

behavior and grow without bound (or diverge) as , while modified Bessel functions of the 

second kind, , exhibit the asymptotic behavior and tend to zero as . A couple of 
the modified Bessel functions of the first and second kinds are shown in figure 3.4 below. In search of 
physically meaningful solutions inside of the glass capillary, one does not want the solutions to grow 

without bound, and therefore the solutions  are rejected. 
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Plot of the modified Bessel Functions of the first and second kind of orders  and .

It therefore follows that the solutions to the longitudinal components are as follows for :

Equations and along with and represent the longitudinal form of the electric and magnetic fields respectively 

in the vacuum gap and in the glass fiber. The coefficients , , , and  are as yet undetermined 

amplitudes of the electric and magnetic fields. The amplitudes , , and  will be expressed in 

terms of the amplitude . Next boundary conditions must be imposed on the solutions found in order to 
determine the allowed modes that the capillary can support. 

Boundary Conditions at 

Boundary conditions need to be imposed at . Applying boundary conditions at the vacuum-glass 

interface imposes restrictions on the undetermined amplitudes ( , , , and ) that appear, and in 
turn the allowed modes that the fiber can support, as will be shown. The applicable electromagnetic 

boundary conditions require that the tangential components of the electric field, ( , ), and magnetic 

field, , be continuous across the boundary. In addition, the normal components 

of the displacement ( ) and the magnetic field ( ) must be continuous across the boundary. The 
components of the electric and magnetic field are found from equations through . Evaluating the components 

one obtains:For , in the vacuum channel:
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For , in the glass:

Next, applying the boundary conditions at , produces the following coupled equations:

These boundary conditions allow one to express the undetermined amplitudes of the electric and magnetic 
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fields in the glass in terms of the still undetermined amplitudes in the vacuum channel. From equations and , 
one finds that:

Substitution into equations and produces, in matrix form, the relations:

Where

Equation is a linear homogeneous system of equations. In order for non trivial solutions to exist, the 
determinant of equation must vanish identically. Thus,

Notice that in equation for  there are no pure TE or TM modes. Equation is the characteristic 

equation for the modes in the waveguide. Equation determines the allowed values of  and of the transverse 

components of , for a given frequency  and index . This accomplishes our first task of deriving the 
modes. Next, one may elicit some of the interesting features of the characteristic equation. 

TE and TM Modes for x rays

Recall that the index, , in the characteristic equation for the modes, equation , is allowed to assume all 

values in the range , , ,  Here one can investigate what happens to the modes as  is allowed to 

assume different indices. Suppose that . The characteristic equation that describes the modes 
becomes:

Therefore, either  or . Here the modes naturally split themselves 
into two families. One family will have the characteristics of the transverse electric (TE) modes while the 
other has characteristics of the transverse magnetic (TM) modes. In the following sections it will be shown 
that the electric and magnetic fields naturally split themselves up into two families, the TE modes which 
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depend on the amplitude  and the TM modes which depend on the amplitude . 

TE modes

The TE modes are described by the amplitude , which is directly proportional to the longitudinal 

magnetic field . Here one will derive the characteristic equation for the TE modes and then examine the 

resulting electric and magnetic fields. For the case that  one has

or

Utilizing the recurrence relations for Bessel and Modified Bessel functions of the first kind, namely,

one can express the derivatives of the Bessel and Modified Bessel functions appearing in equation in terms 
of the functions themselves. Thus, equation becomes

This is the characteristic equation for the TE modes. This agrees with the usual treatment for visible and 
microwave radiation. (See for example the work by Gloge[Gloge] and Marcuse[Marcuse].) In order for a 

mode to be transverse electric, the longitudinal component  of the electric field, must be identically zero. 

This can only happen if  (and thus ) were identically zero. Thus the TE modes only have a 
longitudinal magnetic field. What does this mean in terms of the electric and magnetic fields? To see what 

this means, recall equations through . Inserting  into equations through and using equation for , 

for , and equations and for the derivatives of the Bessel and modified Bessel functions, one arrives at 

the fields that depend on amplitude  (and thus ), namely
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where . 

TM modes

The TM modes are described by the amplitude , which is directly proportional to the longitudinal electric 

field . Here one will derive the characteristic equation for the TM modes and then examine the resulting 

electric and magnetic fields. For the case that  one also has the relation:

Rewriting equation in terms of the representations of  and , and again using the recurrence relations for 
the Bessel and Modified Bessel Functions one finds:

Equation is valid for any  This is also in agreement with the usual treatment for visible and microwave 
radiation. (See for example the work by Gloge [Gloge] and Marcuse [Marcuse].) 

Inserting  into equations through and using equation for , for , and equations and for the 
derivatives of the Bessel and Modified Bessel functions, one arrives at the fields that depend on amplitude 

 (and thus ), namely

where  Further it is instructive to note that for x rays in the limit that  is much less 
than unity, the characteristic equation for the TM modes, equation is identical to the characteristic equation 
for the TE modes, equation for dielectric waveguides. The TE and TM modes are not degenerate in general. 

However when  the boundary conditions do not distinguish between ,  and , . Therefore as 
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 the TE and TM modes become degenerate. In fact the two modes are polarized at right angle to one 
another (thus one being transverse electric and the other transverse magnetic). This is also obvious by 
examining the electric and magnetic fields for the two modes, if further the angle of incidence is also small. 

This allows one to conclude that , which for small angles of incidence gives . Thus for 

example, from equations and (as well as from equations and ),  (and ) and from the TE 

modes a ninety degree rotation gives the TM modes for small  and small angles of incidence. 

The Hybrid modes for x rays

Next, one examines the case where . Here one will find that the modes do not split themselves 
naturally into two families. Both sets of modes will depend on the longitudinal electric and magnetic fields. 
These modes will be termed hybrid since they contain both a longitudinal electric and magnetic field. Recall 
that the characteristic equation for the modes is given again by equation 

where the definitions of  and  are given by equation . Further, recall that no limitations as of yet have 

been placed on . Therefore the characteristic equation is valid for all forms of electromagnetic radiation 

as well as for all . Dividing equation by  and utilizing the definition of  given by equation and using 

the dimensionless parameter,  produces a characteristic equation explicitly involving the 
susceptibility.

The quantities  (equation ) and  (equation ) are proportional to the transverse components of the wave 

vector within the vacuum channel and the glass walls respectively,  is proportional to the critical angle, 

 (equation ), and the dimensionless quantities , , and  are related by

Here it is instructive to give some values to the parameters , , and . For a waveguide of radius 

m, m  (for copper K  x rays) and  (for copper K x 

rays in borosilicate glass), one finds . Using the definition of  given by equation , one finds 

, and thus by equation , with , . The characteristic equation, equation is exact and 
is valid for all frequencies of electromagnetic radiation. Further, this form of the characteristic equation is 
quite complex to work with. Considerable simplifications arise, in the case of x rays, for the susceptibility 
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being much less than unity. Since , along with the condition that  one can neglect the 

terms involving  to first order in equation . Thus,

or taking the square root

Replacing  and  by their definitions, one arrives at the simplified characteristic equation for x rays:

Equation is valid for all integer values of  including zero. Here one can assign a physical meaning to this 

integer , namely that of total angular momentum. This is the angular momentum of the x rays about the 

longitudinal axis of the waveguide as the electric and magnetic fields of the x rays rotate in the -direction 

and propagate in the -direction. If , the angular momentum vector points along . When the mode 
is viewed looking down the waveguide at the mode, as the mode approaches the observer, the mode would 

appear to spiral clockwise. If , the angular momentum vector points along . When the mode is 
viewed looking down the waveguide at the mode as the mode approaches the observer, the mode would 
appear to spiral to the counterclockwise. 

Modes obtained using the  sign in equation (for any  or  value of ) are termed EH , 

while the modes obtained using the  sign (for any  or  value of ) are termed HE , in 

the terminology of fiber optics. Clearly the modes EH  and HE  are degenerate and will be treated later. 

The  or  sign will turn out to be the spin angular momentum of the mode, and the total angular 

momentum, , of the mode will be the sum of the orbital and spin angular momenta. Next, one will explore 
and analyze these two hybrid modes for the case of x rays in the glass capillary. 

The EH  modes
Notice that the characteristic equation, equation , contains derivatives of Bessel and Modified Bessel 
function. It can be rewritten using only the Bessel and Modified Bessel functions themselves, rather than 
their derivatives. Equation may be simplified through the use of the recurrence relations for the Bessel and 
Modified Bessel functions. From Abramowitz and Stegun,
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Using the  sign in equation and the lower signs from the recurrence relation equations and above 
produces

Equation is the characteristic (or eigenvalue) equation and can in principle be solved for the allowed values 

of . Once the allowed values of  are known, one can use equation to determine the allowed values of the 

longitudinal propagation constant . 

Circular Polarization of the Transverse Field Components
The transverse field components are circularly polarized with some interesting implications. The continuity 
of the electric and magnetic fields at the glass interface puts restrictions on the amplitudes of the allowed 

fields  and . First one will determine the relation between the amplitudes of the fields. Second, one 
will show the circularly polarized nature of the fields. Lastly, one will explore the implications of the results 
obtained. 
To demonstrate the relation between the amplitudes of the electric and magnetic fields in the vacuum 

channel, continuity of the tangential components of the electric and magnetic fields (  (equation ) and  
(equation )). Using equations and along with equations and , one can relate the amplitudes of the electric and 

magnetic fields. From equation , the EH  modes are given by

which reduces to

where  and  have been replaced by equations and respectively. Thus the ratio of the amplitudes of 
the electric to magnetic fields is given by

Using the recurrence relations for the Bessel and Modified Bessel functions, along with equations and , one 

is able to simplify equation for the EH  modes. Thus the ratio of the amplitudes of the electric to magnetic 
field reduces to
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for  . Further, by the triangle formed by the incident wave vector with respect to the -axis, the 

longitudinal component of the incident wave vector may be expressed as , which for small 

angles of incidence gives  This produces for the EH  modes

This shows that the longitudinal electric and magnetic field amplitudes are out of phase by . 

To show the circularly polarized nature of the EH  modes, one can calculate the radial and azimuthal 

components of the electric and magnetic fields  directly, by means of the longitudinal 

components  and . For the amplitude ratios for the fields of the EH  modes given by equation , 

equations through produce for ,

The above set of equations for the EH  modes contain derivatives of Bessel functions. One would like to 
eliminate the derivatives in favor of the Bessel functions themselves. The derivatives that appear in 

equations through may be simplified for the EH  modes with the help of a recurrence relation for Bessel 
functions:

Therefore for the EH  modes,
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where again, for grazing angles of incidence, . Therefore,

This is precisely the condition for circular polarization. Here one has for the transverse electric field

where an analogous expression for the transverse magnetic field could also be written. Here the rotation of 
the transverse electric field vector is defined to be clockwise when looking into the wave, and is termed left 
circularly polarized (LCP) and has positive helicity. 
Equation is used to describe the transverse electric field of the fields in the vacuum channel. Examining 

figure 3.5, at a fixed point in space, say point A with coordinates (   ), the transverse electric field 

vectors sweep around in a circle at a frequency . For the EH  modes the magnitude of the transverse 

electric field vector is not constant, but varies with  and the direction varies with  as shown in figure 3.5 

for the case . In other words there appears to be no -dependence to the electric field vectors. 

However, the full transverse electric field vector (equation ) depends on , even if the fields do not. As time 

passes the electric field rotates clockwise. This is spin and has a value of  along . The -dependence of 

the fields is the orbital angular momentum of the mode about the -axis. For the case , the electric 

field vectors all rotate in phase at frequency . 
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Schematic of the electric field vectors for the two cases  and . In the left picture one has EH 

 mode. The electric field vectors are all in phase and rotate clockwise when viewed from a fixed point in 

space, have an orbital angular momentum about the -axis and have total angular momentum . In the 

right picture one has the TM mode case. Here the modes have no -dependence but do have an associated 

orbital angular momentum about the -axis and a total angular momentum of .

The HE  modes

In an analogous fashion to the development of the EH  modes, the HE  modes will now be treated. As 
was done before, the characteristic equation will be expressed in terms of the Bessel and modified Bessel 
functions themselves, rather than their derivatives. Equation may be simplified through the use of the 

recurrence relations for the Bessel and Modified Bessel functions, equations and . Using the  sign in 
equation and the upper signs from the recurrence relation equations and above produces:

Equation is the characteristic (or eigenvalue) equation and can in principle be solved for the allowed values 

of . Once the allowed values of  are known, one can use equation to determine the allowed values of the 

longitudinal propagation constant . 

Circular Polarization of the Transverse Field Components
By virtue of the circular symmetry, it will be shown that the transverse field components for the HE modes 
are polarized and that the polarization is circular. The circular polarization of the transverse field 
components will have some interesting implications. By using the continuity of the electric and magnetic 
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fields at the glass interface, this put restrictions on the amplitudes of the allowed fields  and . First 
one will determine the relation between the amplitudes of the fields. Second, one will show the circularly 
polarized nature of the fields. 
To demonstrate the relation between the amplitudes of the electric and magnetic fields in the vacuum 

channel, recall the continuity of the tangential components of  (equation ) and  (equation ). Using 
equations and along with equations and , one can relate the amplitudes of the electric and magnetic fields. 
From equation , the HE modes are given by:

which reduces to:

where  and  have been replaced by equations and respectively. Thus the ratio of the amplitudes of 
the electric to magnetic fields is given by:

for the HE modes. Using the recurrence relations for the Bessel and Modified Bessel functions, along with 
equations and , one is able to simplify equation for the HE modes. Thus the ratio of the amplitudes of the 
electric to magnetic field reduces to:

Equation is valid for the limit in which  small compared to unity. Further, by the triangle formed by the 

incident wave vector with respect to the -axis, the longitudinal component of the incident wave vector may 

be expressed as , which for small angles of incidence gives  Thus for the HE 
modes:

This shows that the electric and magnetic field amplitudes are out of phase by . 
To show the circularly polarized nature of the EH modes, one can calculate the radial and azimuthal 

components of the electric and magnetic fields  directly, by means of the longitudinal 

components  and . For the amplitude ratios for the fields of the HE modes given by equation , 
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equations through produce for ,

The above set of equations for the HE  modes contain derivatives of Bessel functions. One would like to 
eliminate the derivatives in favor of the Bessel functions themselves. The derivatives that appear in 

equations through may be simplified for the HE  modes with the help of a recurrence relation for Bessel 
functions

For the HE  modes then,
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where, for grazing angles of incidence, . Therefore,

This is precisely the condition for circular polarization. Here one has for the transverse electric field

where an analogous expression for the transverse magnetic field could also be written. Here the rotation of 
the transverse electric field vector is defined to be counterclockwise when looking into the wave and is 
termed right circularly polarized (RCP) and has negative helicity. 
Equation is used to describe the transverse electric field of the modes at a fixed point in space, say point A 

with coordinates (   ). The transverse electric field vector sweeps around in a circle at a frequency , 

while the magnitude varies with  and the direction varies with . For the  case, the -dependence 
is the orbital angular momentum associated with the electric field which makes the electric field vectors 
rotate out of phase with each other. The spin of the electric field vectors is counterclockwise and has a value 

of  and points along  as shown in figure 3.6. 

Schematic of the electric field vectors for the two cases  and . In the left picture one has HE 

 mode. The electric field vectors are all in phase and rotate counterclockwise when viewed from a fixed 

point in space, have an orbital angular momentum about the -axis and have total angular momentum . 

In the right picture one has the TM mode case. Here the modes have no -dependence but do have an 

associated orbital angular momentum about the -axis and a total angular momentum of .

EH  and HE  Mode Degeneracy
Recalling that the general characteristic equation for the modes is given by equation , one may notice that 
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the index  used to characterize the modes may assume any integer value (positive or negative) as well as 

zero. The modes that arise by solving equation will have a natural degeneracy in the choice of . Both 

positive values of  (with the  sign in the characteristic equation) and negative values of  (with the  

sign in the characteristic equation) will satisfy the characteristic equation, with the choice of  equal to zero 

being trivial. The resulting modes will propagate with the same propagation constant . The choice of 

 in equation lead to the TE/TM modes, while the choice of  different from zero leads to the hybrid 

EH/HE modes. Equation is valid for all values of . For x rays, when the limit of small  is taken, a 
degeneracy will arise that will allow one to combine the hybrid circularly polarized modes into a set of 
linearly polarized modes. 

EH and HE Mode Degeneracy as a consequence of Changing Indices From 

 to 

The EH  and the HE  modes will be ultimately be defined by the same characteristic equation, in the 

limit of small . It will be shown that equation for the EH  modes will turn out, in the limit of small , 

to be identical to the characteristic equation, equation for the HE  modes. Thus, those modes will be 

called degenerate in the sense that EH  and HE  modes will propagate with the same propagation 

constant . To do this, one may recall equations for the EH modes and for the HE modes. Recall from 

equation the characteristic equation for the HE  modes is given by

If one makes the substitution of  in equation , one finds

Using the fact that  and that  one obtains the following relation

which is equation , the characteristic equation for the EH  modes. Thus the HE  and the EH  modes 

are degenerate, that is they propagate with the same propagation constant  which is given by equation . 
Therefore one may write this degeneracy as
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Next, one may ask how the fields that describe the modes change as one makes the substitution  in 

the characteristic equations. Recall that the radial and azimuthal electric and magnetic fields for the EH  

modes are given by equations through , while for the HE  modes they are given by equations through . 

Suppose, for example, that one examines the radial and azimuthal electric field of the EH  mode, with the 

radial and azimuthal magnetic fields following by analogy. If one makes the substitution of , the 
radial and azimuthal electric fields transforms from 

to

Absorbing the factors of  into  and simplifying, one obtains:

Recall that the index  describes the orbital angular momentum. In making the substitution from , 
the total angular momentum has flipped its sign and the mode has gone from a state of being LCP to being 

RCP. Further, notice that the spin angular momentum has gone from  in an EH mode to  in an HE 

mode while the mode continues to propagate in the -direction. An illustration of this degeneracy is shown 
in figure 3.7. 
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Illustration of the degeneracy that arises between the EH  and HE  modes when the index is changed 

from . This degeneracy was explored and used as a basis the eventual superpostion of the hybrid 
circularly polarized EH/HE to form the linearly polarized modes.

Behavior of modes for 
The behavior of the hybrid modes needs to be examined for angles of incidence that are much less than 
critical angle, or for the condition of near grazing incidence. Note, as the angle of incidence approaches the 

critical angle  gets larger (it is proportional to the angle of incidence), and  gets smaller, and the x rays 
penetrates farther into the glass capillary and are no longer confined in the vacuum channel. The behavior of 

the modes for angles of incidence much less than the critical angle is determined by the limit of . In 

this situation there is little penetration of the x rays into the glass capillary. For large , the modified Bessel 
functions become, for angles of incidence much less than the critical angle:

such that

Since there exist different classes of modes, namely the TE, TM, and the hybrid EH  and HE  modes, it is 
instructive to look at each of these cases separately. 

The TE and TM modes for 
Here one will examine the behavior of the TE and TM modes for angles of incidence that are much less than 

critical angle. Recall that the TE and TM modes are identical for  and that the characteristic 

equation is given by either equation (for the TE modes) or equation (for the TM modes). For , the 
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characteristic equation for the TE or TM modes becomes, in the limit of large ,

Further, from the recurrence relations for the Bessel functions:

such that the left hand side of equation in the limit of large , the behavior of the TE  or TM  
modes are governed by

where  is the  zero of . The first five zeros of  are given in table 3.1 below 

J

1 3.832

2 7.016

3 10.173

4 13.324

5 16.471
\caption{The first five zeros of $J_{1}$(u).\label{key}} 

The EH modes for 

Again to determine the behavior of the EH  modes one assumes that the incident wave vector makes a 

small angle of incidence, much smaller than the critical angle, and that  is much less than unity. For the 

EH  modes far from the critical angle (in the limit of large ,) the modified Bessel functions are given 

again by equation . Recalling the EH  defined by equation , one seeks a representation of  in 

terms of . From the recurrence relations for the modified Bessel functions,

and

where  from equation will be utilized. Thus
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Therefore equation becomes:

In the limit that , the right hand side of equation vanishes and the behavior of the EH  modes is 
dictated by: 

The  zeros of  are given in the table 3.2 above. 

1 2 3 4 5

0 3.832 7.016 10.173 13.324 16.471

1 5.136 8.417 11.620 14.796 17.960

2 6.380 9.761 13.015 16.224 19.409

3 7.588 11.065 14.373 17.616 20.827

4 8.771 12.339 15.700 19.980 22.218

5 9.936 13.589 17.004 20.321 23.586
\caption{The zeros of $J_{m+1} $(u). The values of m are labeled down the left most column.\label{key}} 

The above analysis has . One could redo the analysis for  large, but not necessarily infinite. The 
radial Bessel function solution does not go to zero and vanish at the glass interface. In the glass, the 

solutions decay as a modified Bessel function. The 's that appear in the argument of the Bessel function 
will in general lie close to a zero of the Bessel function that describes the radial solution, in this case 

. To incorporate this fact, let

Here  represents the  zero of  as  for the case where there is no penetration by the x-ray 

into the glass, and  is a small first order correction to  which represents the amount of penetration of the 

x-ray into the glass. Taylor expanding  and  about  produces:
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where . The derivatives of the Bessel functions are obtained through the use of the recurrence 
relations. Thus equations and become:

and equation becomes for any ,

where:

for the case that . Therefore equation becomes

In this case, for any ,

so that

Recalling that since  and , equation gives  and the real zeros of the Bessel function 

when the x-ray penetrates into the glass, , may be approximated by the zeros of the Bessel functions when 

there is no penetration of the x-ray into the glass . 

The HE modes for 

For  and for large , the modified Bessel functions are given again by equation . Recalling the HE 

 defined by equation , one seeks a representation of  in terms of . In an analogous 

fashion to the development of the EH  modes, the behavior of the mode is given by:
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For , the behavior of the HE  is given by: 

and the  zeros of  are given in the table 3.3 below. 

1 2 3 4 5

2 3.832 7.016 10.174 13.324 16.471

3 5.136 8.417 11.620 14.796 17.960

4 6.380 9.761 13.015 16.223 19.409

5 7.588 11.065 14.373 17.616 20.827

6 8.775 12.339 15.700 18.980 22.218

\caption{The zeros of $J_{m-1}$(u). \label{key}} The above analysis has . One could redo the 

analysis for  large, but not necessarily infinite. The radial Bessel function solution does not go to zero and 

vanish at the glass interface. In the glass, the solutions decay as a modified Bessel function. Thus the 's that 
appear in the argument of the Bessel function will in general lie between two successive zeros of the Bessel 

function that describes the radial solution, in this case . To incorporate this fact, again, let  be 

given again by equation and Taylor expand  and  about  in evaluating equation . In a 

completely analogous fashion to the development of the EH  modes, the HE  modes become:

Recalling that since  and , equation gives  and the real zeros of the Bessel function 

when the x-ray penetrates into the glass, , may be approximated by the zeros of the Bessel functions when 

there is no penetration of the x-ray into the glass . 

Linearly Polarized Modes

The degenerate circularly polarized EH  and HE  modes can be superposed to form linearly polarized or 
LP modes. These differ from the usual linearly polarized modes for x rays in vacuum in that these linearly 

polarized modes have total angular momentum denoted by the mode index . In order to superpose the EH 

 and HE  modes with the same total angular momentum, one will transform both sets of modes from a 
cylindrical coordinate system to a rectangular coordinate system. In performing this transformation to a 
rectangular coordinate system, the rotating modes will be able to be superposed in a compact and easy 
manner. The linearly polarized modes will be the modes used in the remainder of the thesis. 
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Transformation of the EH  modes from Cylindrical to Rectangular 
Coordinates

Since the hybrid EH  or HE  modes are degenerate, one would like to combine them together to form a 
linearly polarized mode. To do this it is advantageous to express the electric and magnetic fields in terms of 
Cartesian components rather than cylindrical components. To transform from the cylindrical coordinate 
system to the rectangular coordinate system, one applies the transformation matrix to the cylindrical field 
components. For the electric field, one has

with a similar transformation matrix for the magnetic field. To transform the EH  modes, recall that the 
longitudinal electric and magnetic field components are given by equations and , while the transverse 
electric and magnetic field components are given by equations through in the vacuum channel. For brevity, 

the -dependent term,  will be suppressed the following derivation. Expanding the complex 
exponentials using Euler's result:

it follows that the EH  modes may be expressed as:

Applying the transformation matrix and simplifying the resultant expressions for  the electric fields 
yields:
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Next, one may simplify equations to by using the following identities:

Thus for the EH  modes the transformed electric and magnetic fields are given by:
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This accomplishes the first task. The EH  modes have been transformed from a cylindrical coordinate 
system to a rectangular coordinate system. 

Transformation of the HE  modes from Cylindrical to Rectangular 
Coordinates

Having transformed the EH  modes, the HE  modes need to be transformed in order to fashion the LP 

modes. In order to transform the fields of the HE  modes, one follows the same procedure given for the EH 

 modes, and the results are given by

where the EH  and HE  transformed components, (equations through ), are valid in the limit of  

and for . This accomplishes the second task. The HE  modes have been transformed from a 
cylindrical coordinate system to a rectangular coordinate system. Further, equations through , may be 
rewritten in terms of complex exponentials rather than the in a form that uses the sine and cosine function. 
Thus, in summary, replacing the sines and cosines by their complex exponential representation yields:
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where the upper sign is for the EH  modes and lower sign is for the HE  modes respectively. 

Superposition of the hybrid modes to form the LP modes

The circularly polarized degenerate modes EH  and HE  can be superposed to form a set of linearly 

polarized, LP modes. Recall that the transformed electric and magnetic fields for the EH  and HE  modes 
are given by equations through and the recipe for transforming to the LP modes will now be given. Write the 

transverse electric field components of the EH  and HE  modes (with analogous expressions for the 
transverse magnetic field components omitted for brevity)

where one has defined the undetermined constant amplitudes  for the EH  modes and  for the HE  

modes. Next, using the fact that the EH  modes are degenerate with the HE  modes, and using a 

reoccurrence relation for Bessel functions, , one one can write the transverse 

electric field components of the HE  modes as (with analogous expressions for the transverse magnetic 
field components omitted for brevity)

Next, absorbing the factors of  into the amplitude  by defining  one is able to 

form linear combinations of modes with the same azimuthal variation,  by additions and subtractions of 
various transverse field components. Thus one can define the linearly polarized modes as
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Now, using equation with the upper sign, one can form the electric and magnetic fields of the LP  modes by 

superposing the appropriate electric and magnetic fields of the degenerate hybrid HE  and EH  modes 

with the same azimuthal variation, and thus the same propagation constant, .

Now one can form the electric and magnetic fields of the LP  modes by superposing the appropriate electric 

and magnetic fields of the degenerate hybrid HE  and EH  modes with the same azimuthal variation, 

and thus the same propagation constant, , by using equation with the lower sign
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Next, one may notice that the LP  contain  and the LP  modes contain . To simplify the 

notation for the LP modes define  for the LP  and  for the LP  

The index for the various LP modes can assume all values . For example, choosing the upper sign in 

the definition of , for , , and the LP  modes is thus called the fundamental mode, while for 

 the modes are called higher order. Next, one may ask where are the  TE/TM modes? For 

 this gives  and the TE/TM modes are thus not fundamental modes, but actually are higher order 

modes. To see this what this implies, recall that the propagation constants,  are obtained from equation . 

The values of  (the zeros of the Bessel function) increase for increasing values of the index . This 

produces for an x-ray incident with wave vector , a smaller magnitude for the longitudinal wave vector . 
Since the energy carried in the mode is proportional to the longitudinal wave vector, this gives lower order 
modes a lower energy. In other words the fundamental mode is the mode in the lowest energy state and 
higher order modes are consequently in higher energy states. 

To summarize, the electric and magnetic fields associated with these LP  modes have the following form

while the electric and magnetic fields associated with these LP  modes have the following form
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Next, one may notice that the the LP modes form a degenerate set. The LP  modes are simply a  

rotation of the LP  modes. Thus the LP  modes look like

while the LP  modes are thus

The electric field patterns associated with an LP mode, say the LP  mode are shown in the following 
section. 

LP Mode Electric Field Patterns

In the accompanying figures the first few of the low order LP  modes are shown, where  represents the p

 zero of . The real part of the electric field for one combination of the LP  modes, namely the -

polarized LP  modes, is plotted according to equation , (the other set of fields, equation is simply the same 

as equation , rotated by 90 .) In the following the magnetic fields are omitted for clarity as well as the -
components of the electric and magnetic fields. 
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Plot of the electric field in the LP  mode in an x-ray waveguide. The electric field vectors are obtained 

by taking the real part of the complex electric field of the associated LP  mode. The real part of the 

electric field follows  and the plot is for a waveguide whose radius has 
been normalized to 1.

Plot of the electric field in the LP  mode in an x-ray waveguide. The electric field vectors are obtained 

by taking the real part of the complex electric field of the associated LP  mode. The real part of the 

electric field follows  and the plot is for a waveguide whose radius has 
been normalized to 1..
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Plot of the electric field in the LP  mode in an x-ray waveguide. The electric field vectors are obtained 

by taking the real part of the complex electric field of the associated LP  mode. The real part of the 

electric field follows  and the plot is for a waveguide whose radius has 
been normalized to 1.
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Plot of the electric field in the LP  mode in an x-ray waveguide. The electric field vectors are obtained 

by taking the real part of the complex electric field of the associated LP  mode. The real part of the 

electric field follows  and the plot is for a waveguide whose radius 
has been normalized to 1.

Plot of the electric field in the LP  mode in an x-ray waveguide. The electric field vectors are obtained 

by taking the real part of the complex electric field of the associated LP  mode. The real part of the 

electric field follows  and the plot is for a waveguide whose radius 
has been normalized to 1.
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Plot of the electric field in the LP  mode in an x-ray waveguide. The electric field vectors are obtained 

by taking the real part of the complex electric field of the associated LP  mode. The real part of the 

electric field follows  and the plot is for a waveguide whose 
radius has been normalized to 1.

In the following figures the real part of the electric field is plotted for various LP  modes. Recall that the -
polarized electric field is given by equation and the associated real part is obtained by taking 

. In figure 3.8, for example, notice that the field is that 

of an -polarized LP  mode, whose real part of the electric field in the -direction is proportional to 

. The real part of the electric field follows a Bessel function in the radial direction and has a 
maximum at the center of the guide and decreases to a small value at the glass boundary. Around the axis of 

the guide the mode follows a cosine pattern, given by . Here,  and , thus the 

magnitude of the electric field around the axis of the waveguide is constant in the -direction for a given 

radius, , from the center of the waveguide. Further the electric field decreases from its maximum value to 
nearly zero along any radial direction as described by the Bessel function. 
Next one could ask where the energy is contained in the waveguide. Since the energy carried by an x-ray is 

proportional to the square of the electric field, examination of figure 3.8 for the LP  mode, shows that the 
energy is most nearly contained along the axis of the waveguide. As one moves toward the outer edges of 

the waveguide the energy flowing there decreases. Since the electric field, which is proportional to  
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decreases, thus the energy contained near the edges of the waveguide is very small. 

Figures 3.9 and 3.10 show a LP  and a LP mode respectively. These figures show patterns similar to 

those of figure 3.8 Again the electric fields vary as  in the radial direction and in the azimuthal 
direction for a given radius from the origin, the electric field is constant in magnitude. Further the electric 
field oscillates from the center of the waveguide toward the glass boundary. Thus the energy contained in 
the waveguide is most nearly contained close to the axis of the waveguide and decreases as one moves along 
any radial direction toward the glass boundary. 

In figures 3.11 and 3.12 the the electric and magnetic field variation is with the cosine of  while figure 3.13 

varies with cosine . Further the fields vary in the radial direction as a Bessel function, , and the 
electric fields increase from zero to a maximum halfway from center of the waveguide and then decreases 
back to zero along any radial direction described by the Bessel function. In figure 3.11, for example, most of 
the energy is flowing where the electric field is a maximum, which by inspection, occurs roughly halfway 
between the center and glass capillary walls of the waveguide. Similar features can be seen in figures 3.11 
and 3.12. 
Further, not shown in the figures are places where the electric field vanishes. These places are called nodes. 
One set of nodes are radial and are given where the radial variation of the field vanishes. These radial nodes 

described by , are fixed. The other set of nodes are obtained from where the azimuthal variation 

of the electric fields ( ) vanishes and these rotate in time around the -axis of the waveguide. 
Although it cannot be seen in figures 3.8 through 3.13, the radial solution does not vanish at the vacuum-
glass boundary. In the glass the electric and magnetic fields are described by a modified Bessel function and 
the fields exponentially tail-off. 

Photoelectric Absorption of the LP  Modes Along the 
Waveguide
The photoelectric absorption of a waveguide mode as it travels down the guide is due mainly to penetration 

of the mode into the glass. Modes for which  penetrate less and thus experience less absorption. 

Absorption coefficients are calculated from the imaginary part of the longitudinal wave vector, . Since the 
susceptibility has both a real and an imaginary component given by

 becomes

where  is defined as
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Next using the definition for  (equation ) with the condition that  must be real, one can write:

Since must be real, the imaginary part of equation must vanish identically. Thus

or,

For modes in which , recall that  for the LP  modes are given by equation and the imaginary 

part of , , is then for the LP  modes:

Since  is typically larger than ,  is small. Thus equation may be approximated by:

Therefore, the imaginary part of the longitudinal wave vector can be written:

where  has been replaced by its definition, equation . Furthermore equation , with , becomes for 

the LP  modes:

If one further approximates  which is approximately valid for small , and further recalling that 

 one obtains for the LP  modes:

Defining the effective linear absorption coefficient for glass to be  and since , one 
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obtains the effective linear absorption coefficient for each mode for :

The  that appear in equation depend on the x-ray energy. For Cu K  x rays with an energy of 8 keV in 

borosilicate glass, 72.16 cm , while for oxygen x rays with an energy of 522 eV, 9331.4 cm

. Since the x-ray intensity varies as , where  is the penetration depth in the material, the  decay 

length is the distance that the x ray travels before before its intensity decreases by a factor of . This decay 

length is proportional to  which is simply . The effective linear absorption coefficients (in m ) and 

the  decay lengths (in m) for several modes of Cu K  x rays in a 5 micron waveguide are calculated in the 

tables 3.4 and 3.4 above (while for O x rays the effective linear absorption coefficients and  decay lengths 
in a 5 micron waveguide are given in tables 3.6 and 3.7 respectively, below.) 

\caption{Effective linear absorption coefficients (in m{-1} ) for copper x rays.\label{key}} 

\caption{(1/e) decay lengths (in m) for the copper x rays.\label{key} } 
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\caption{Effective linear absorption coefficients (in m{-1} ) for oxygen x rays.\label{key}} 

\caption{(1/e) decay lengths (in m) for oxygen x rays.\label{key}} 

Let's consider for example, the LP  mode for the Cu K  x rays. The  decay length for the LP  mode, 
from table 3.6, is approximately 3700 meters. This is a very large propagation distance for the x-ray to 
travel. This striking result is probably not a realizable result in a practical x-ray waveguide. Further, equation 

has  proportional to , for a waveguide of radius a. This could be a potentially dangerous result. The 
waveguides would need to be very narrow in order for waveguide effects to be relevant. These large 
propagation distances are most likely due to the low order modes being contained almost entirely within the 
waveguide, and thus the low order modes experiences very little penetration into the glass. As the mode 
number increases, so too do the absorptive losses of the x-ray to the glass capillary walls. The x rays strike 
the glass walls at larger angles and thus are more likely to be absorbed by the glass capillary. 
Another important energy loss mechanism that the x-ray experiences is loss due to rough surfaces. Thus far, 
the waveguide has been assumed to be perfectly smooth. In a real x-ray waveguide, the walls of the 
waveguide are most likely going to be rather rough. The effects of surface roughness on the propagation of 
the x-ray needs to be studied and will be revisited in chapter 6 where a model for surface roughness will be 

proposed. Chapter 6 will incorporate the effects of surface roughness effects and new  decay lengths will 

be calculated and compared to the decay lengths calculated above. 

Conclusion
For the circular dielectric waveguide, the modes were obtained by solving Maxwell's equations. The 
transverse fields were expressed in terms of the longitudinal fields and wave equations for the longitudinal 
electric and magnetic fields were solved by separation of variables. Next boundary conditions on the wave 

function solutions were imposed and the characteristic equation for the modes was derived. For the  

case the modes were found to exhibit properties of the TE and TM. The modes ( ) are neither TE or 

TM but are termed hybrid and denoted by EH  and HE . 
The propagating modes were obtained by solving Maxwell's equations. Thus, polarization effects are fully 
taken into account. The transverse fields were expressed in terms of the longitudinal fields and wave 
equations for the longitudinal electric and magnetic fields were solved by separation of variables. Next 
boundary conditions on the wave function solutions were imposed and the characteristic equation for the 
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modes was derived. 

In the limit that  is much smaller than unity, the hybrid EH  and HE  modes were found to obey the 

same characteristic equation for the change of indices . This degeneracy was exploited and used to 

superpose the hybrid circular modes to form a set of nearly linearly polarized or LP  modes. There were 

found two sets of LP modes denoted respectively LP  and LP . Only the LP  modes were investigated 

since the LP  modes are simply a 90  rotation of the LP  modes. One could associate with the modes an 

orbital angular momentum (the -dependence of the electric and magnetic fields) and a spin. The modes 

have a total angular momentum of . The right or left circular polarization (the rotation of the electric fields 
at a given point in space) is associated with the helicity or spin of the photons. Spin is usually associated 
with quantum mechanics. Here one has a purely classical example that involves spin. 

The real part of the electric field for various LP  modes was plotted for a waveguide of an arbitrary radius. 

For the low order LP  family of modes it was found that the energy flow was at the center of the 
waveguide and decreased as one moved from the center of the waveguide toward the glass boundary along 

any radial direction. For the higher order modes, , it was found that the energy flow was not near the 
center of the waveguide. It was found by inspection that most of the energy was flowing at increasing radial 
distances from the center of the waveguide and ultimately decreased as one approached the glass boundary 
along any radial direction. 
There are two energy loss mechanisms that the x-ray experiences. Photoelectric absorption effects were 
investigated and losses due to photoelectric absorption were calculated. This was done by calculating the 
imaginary part of the dielectric susceptibility. The imaginary part of the wave vector was then calculated and 

used to calculate the  decay lengths for the x rays as they travel down the fiber. It was found that the 

lowest order modes (the LP ) propagate on the order of 10 kilometers for higher energy x rays, while for 
lower energy x rays the propagation distances were on the order of hundreds of meters. While these 
propagation distances may be a shocking result, in practical x-ray fibers this is probably not a realizable 
feature. 
The second energy loss mechanism is due to surface roughness. It has been assumed thus far that the glass 
capillary fibers have perfectly smooth walls. A more realistic treatment of the x-ray capillary needs to 
include losses to the x-ray energy from the x-ray striking a rough glass surface. A model of surface 

roughness needs to be developed (chapter 6) and new  decay lengths for the x rays as they travel down the 
fiber need to be calculated and compared to the results stated above. 

Excitation at the Waveguide Entrance

Introduction
Having derived and calculated the modes that can propagate along the waveguide, one wants in this chapter 

file:///C|/Documents%20and%20Settings/labrakes/Desktop/thesis%201/Doctoral%20Thesis%20Scott%20LaBrake.htm (61 of 101)9/9/2004 5:47:33 AM



Doctoral Thesis Scott LaBrake.htm

to investigate the extent to which the various modes are excited by an externally incident plane wave. In 
particular, one is interested in finding under what conditions can one selectively excite a subset of the 
modes, or perhaps a single mode. This amounts to coupling at the waveguide entrance the incident plane 

wave, directed at an arbitrary angle of incidence, to the launching of the LP  field modes that propagate in 
the waveguide. In order to accomplish the task coupling the plane wave incident at the waveguide entrance 

and the LP  modes launched, the modes must be first normalized. 

Normalization of the Incident Plane Wave and the LP  Modes
Normalization of the Incident Plane Wave
In order to couple the incident plane to the modes launched at the waveguide entrance the plane wave 
solutions as well as the electric and magnetic fields that describe the modes need to be normalized. For the 
plane wave in free space, one can assume the electric and magnetic fields are given by:

For small ,  , , where , , and  are three 

mutually perpendicular unit vectors and  is a constant. The time averaged flux of energy is given by the 

Poynting vector  and may be written as:

which can be simplified, in the case of a plane wave, by using equations and , to read:

To fix the constant  one imposes a normalization condition. Here, the normalization condition is chosen 

such that the flow of energy is 1 photon of energy  per unit time into the area  of the capillary. 
Performing the normalization for the incident plane wave produces, 

Since for small angles , cos , equation yields,
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The incident plane wave energy density, given by the Poynting vector, is

Normalization of the LP  Mode Solutions

This section describes the normalization procedure for the LP  modes. One needs only to consider the LP  

polarizations of the modes since the analysis of the LP  polarizations is analogous. Thus in what follows, 

the superscript  of the LP mode polarization will be omitted. Up to now, there has been an overall constant 

that describes the amplitude of the modes, . To fix this constant, one also normalizes the LP  mode 

solutions to a fixed, but arbitrary, flux of 1 . The Poynting vector, using the electric and magnetic 

fields for the LP  modes, equation , can be simplified to

Performing the normalization for the LP  modes over the aperture of the waveguide gives:

Excitation by an Externally Directed Plane Wave at the 
Waveguide Entrance

Having the electric and magnetic fields of the LP  modes normalized, one may now calculate the excitations 

of the waveguide modes by directing, at some angle  with respect to the normal to the waveguide entrance, 

an externally directed plane wave of frequency . The extent to which various modes are excited will be 

investigated as a function of the incident angle . 

Here it is assumed that the only portion of the incident plane wave that contributes to the LP  mode's 
excitation will be that which is incident on the waveguide aperture. Since the susceptibility is small (

), the contribution of the portion incident on the glass can therefore be neglected. Without loss of 

generality, one may assume that the incident plane wave lies in the  plane, , and where the 

waveguide opening is taken to be at . In other words,

file:///C|/Documents%20and%20Settings/labrakes/Desktop/thesis%201/Doctoral%20Thesis%20Scott%20LaBrake.htm (63 of 101)9/9/2004 5:47:33 AM



Doctoral Thesis Scott LaBrake.htm

where  has been replaced by equation . 
Recall that the electromagnetic boundary conditions used in chapter 3 were that the tangential components 

of  and  (along with the normal components of  and ) must be continuous across the boundary. This 

requirement gives the tangential components of  and  for non-magnetic media, while 

the normal components are given as  and . At the  boundary there will 
be both a reflected as well as a transmitted wave. The transmitted wave will be that used to excite the 

various LP modes. Since the susceptibly is small ( ) the reflected waves at the boundary as well as 
the evanescent waves in the glass are negligible hence will be neglected in the present study. In other words 
the modes will propagate with nearly the same propagation constant as the plane wave. 
In order to determine the extent to which various LP modes are excited, one sets the electric field of the 
incident plane wave equal to the sum of the linearly polarized modes wavefunctions weighted by their 

respective excitation coefficients, , at . Equating electric field of the incident plane wave to the 
electric field of the linearly polarized modes launched the waveguide entrance, produces:

where  for the plane wave incident at angle , and the excitation coefficients need to 
be extracted. The left hand side of equation can be expanded in a Bessel Series. From Arfken,

Therefore, one has

The excitation of a LP  mode is defined as the square of the coefficients . To extract the excitation 
coefficients one multiplies the right and left hand sides (denoted by RHS and LHS respectively) of equation 
by the complex conjugate and integrates over the cross sectional area of the waveguide. This produces for 
the right hand side of equation ,
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The integral over  gives . Equation now may be expressed as after performing the integral over ,

In a similar manner after some algebra, produces for the left hand side:

where . Equating the LHS and the RHS (equations and ) one obtains an equation for the excitation 

coefficients :

For Cu K  x-rays, the excitation coefficients in equation is computed for input angles  ranging from -50

rad to 50 rad, and the excitation, , is plotted in the figures 4.1 and 4.2 below. These figures 

demonstrate the extent to which the LP  modes may be preferentially excited by the incident plane wave. 

For example, for Cu K  x rays, with an energy of 8 keV, incident at an angle of  rad, one can see that 

from figure 4.1, about 70% of the wave will appear in the LP mode, 13% of the wave will appear in the 

LP  mode, 6% of the wave will appear in the LP  mode, 3% of the wave will appear in the LP  

mode, and 1% of the wave will appear in the LP  mode. 
In terms of the flow of energy along the longitudinal axis of the waveguide, the majority of energy flow for 

the LP  family of modes is contained near the center of the waveguide. The energy flow can be 
calculated, as a function of waveguide radius, by evaluating equation . Since the energy flow is given by the 
Poynting vector, equation , is proportional to the square of the electric field, and thus where the electric field 
is larger, more energy will be flowing. Figures 3.8 through 3.10 corroborate this result, namely that most of 

the energy in the LP  family of modes is flowing along the longitudinal axis of the waveguide for small 

values of . As one moves toward larger radii, the electric field vectors are smaller and thus the energy 
flowing at these larger radii is smaller. 

At exactly 0 rad none of the higher  modes will be excited by the incident plane wave. To excite the 
higher order modes, one needs to change the angle of incidence of the incident plane wave. From figures 4.1 
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and 4.2, at say an angle of incidence of 5 rad, the energy contained in the modes is shared primarily 

between the LP  mode and the higher order LP , LP , and LP  modes. Again, most of the energy 
carried in these LP modes finds itself flowing again near the center of the waveguide. As one moves to the 
outer edges, the higher modes have a lower excitation and the energy these modes carries decreases rapidly. 
This can be corroborated by examining figures 3.11 through 3.13. 

Of course, one does not have to use Cu K  x rays. In figure 4.3 the x-ray energy is varied as a function of 

input angle. In this figure, the excitation of the fundamental LP  mode is plotted versus input angle for 
various x-ray energies ranging from 0.5 keV (soft x-rays) to 8 keV (hard x-rays). The x-ray energy enters the 

calculation of the excitation  through the dimensionless parameter, . By changing the 

wave vector  one in essence changes the x-ray energy. Here one finds that the individual excitations of the 

modes remain unchanged. In other words, the LP  mode has an excitation of approximately 70% 

independent of the x-ray energy used to excite the LP  mode. However, there is a larger input angle cone 
as the energy of the x-ray is lowered because the critical angle, which is inversely proportional to the x-ray 
energy (see for example equations and ), is much larger. Thus for lower energy x rays, incident at an angle 

, the input cone is much larger. This larger input cone produces the broad spreading of the excitation curve 
for lower energy x rays and the narrow excitation curve for higher energy x rays. 
Next one could ask, how many modes can be excited at a given angle of incidence? In order to answer this 

question, one can plot, for example, several of the lowest order family of modes, the LP  modes versus 
input angle as shown in figure 4.4 below. 

file:///C|/Documents%20and%20Settings/labrakes/Desktop/thesis%201/Doctoral%20Thesis%20Scott%20LaBrake.htm (66 of 101)9/9/2004 5:47:33 AM



Doctoral Thesis Scott LaBrake.htm

Excitation of the zeroth order linearly polarized modes LP  LP  LP  LP  and LP  versus 

input angle in radians. The excitations are  from equation .
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Excitation of the first order linearly polarized modes LP  LP  and LP  versus input angle in 

radians. The excitations are  from equation .
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Excitation  of the zeroth order linearly polarized mode LP  versus input angle in radians for 
various x-ray energies in keV.

file:///C|/Documents%20and%20Settings/labrakes/Desktop/thesis%201/Doctoral%20Thesis%20Scott%20LaBrake.htm (69 of 101)9/9/2004 5:47:33 AM



Doctoral Thesis Scott LaBrake.htm

Plot of the excitation of a LP  mode versus input angle in radians for Cu K  x rays. This plot is used to 
determine the approximate number of modes that propagate at a given input angle. It should be noted here 

that exept for the horizontal scale this plot is valid for any energy x-ray.

Examination of figure 4.4 shows that at an angle 0 radians, the x rays are shot directly down the center of 
the waveguide. Here, for example, one can excite with an excitation greater than 1%, 6 modes, namely LP 

 through LP . However, no x-ray source is perfectly collimated. There will be some angular divergence 
inherent in the x-ray beam. Thus some mode mixing is bound to happen. As one can see from examining 

figure 4.4, at say an angle of 5 microradians, the LP  mode is excited with a probability of about 40%, the 

LP  mode is excited with a probability of about 15%, the LP  and LP  modes are excited with 

almost equal probabilities, namely 3%, along with some higher order modes, namely those of the LP  
family. 

Conclusion
The excitation of various LP modes that were excited by an external incident plane wave were calculated. In 
order to calculate the excitation, the LP modes and incident plane wave were normalized to an flux of energy 

of 1  into the cross sectional area of the waveguide. 

The x-ray energy was varied for the lowest order, LP  mode. Here it was found that the excitation of the 

LP  mode is 70% and is independent of the x-ray energy. Since the critical angle increases with 
decreasing x-ray energy, one finds for soft x rays the input angle cone is larger than the input angle cone for 
hard x rays. 

The number of modes that are excited was also investigated for the case of the lowest order LP  modes. It 
was found that for an arbitrary value of the excitation, namely greater than 1%, 6 modes propagate at exactly 

0 radians. At increasing angles of incidence higher order modes are also excited and thus propagate down 
the waveguide. In this thesis the x-ray beam is highly collimated and in practice the x-ray beam has an 
angular divergence and some mode mixing is bound to occur. 

Diffraction at the Waveguide Exit: A New 
Approach to Vector Diffraction Theory

Introduction
Having launched modes into the waveguide, one is interested in how those modes that reach the waveguide 
end couple to the outside world. This amounts to calculating the diffraction pattern produced on a "detector" 
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at a point P far from the waveguide. The diffraction pattern, which is a Fraunhofer diffraction pattern, is 
similar to that of a diffraction pattern produced by a plane wave incident on a circular aperture. The 
calculation of the vector diffracted fields based on the vector analogue of the Kirchhoff diffraction formula 
is very difficult in all but the simplest geometries. This difficulty has induced one to seek an alternative 
approach to diffraction. The approach used in this chapter follows a logic similar to the asymptotic 
reciprocity theorem (ART) to calculate the diffracted fields. 
The usual form of the principle of reciprocity states that everything else being equal, the amplitude of a 
wave at some point A due to a source located at another point B is equal to the amplitude of a wave at point 
B due to a source located at a point A. In other words there is a symmetry between the source and field 
points. In terms of waveguide terminology, reciprocity can be stated in the following manner: the diffracted 
fields produced on a detector at a point P due to a source located at the waveguide exit will be equal to the 
amplitudes of the fields at the waveguide exit due to a source located at the point P. The drawback is that the 
usual form of the reciprocity theorem refers to the exchange between the source and field points. In other 
words, usually one has a source of spherical waves, perhaps in a medium, and one is interested in the fields 
at some distance far away from the source where at these far distances the fields are typically plane wave. 
The result Caticha [Caticha] obtains is an asymptotic form of the reciprocity theorem that gives the 
asymptotic radiation fields directly in terms of the source. The approach taken here (section 5.2) allows 
computation of the asymptotic diffracted fields directly in terms of the fields at the exit opening of the 
waveguide. The source is effectively being replaced by the fields at the waveguide exit. The net result is a 
formalism that is equivalent to the Kirchhoff vector diffraction formula and is considerably more convenient 
because it is better suited to plane wave geometry. 
As a first pedagogical example one calculates the diffracted fields for a well known case, namely that of a 
plane wave incident on a circular aperture (section 5.3). The result for the diffracted fields due to a plane 
wave incident on a circular aperture will coincide with the well known result given in, for example, Jackson. 
This is a very a remarkable result. Historically, calculations involving standard vector diffraction has been 
very labor intensive and difficult to apply in all but a few special circumstances. The ART reproduces the 
classic far field results for vector diffraction of a plane wave by a circular aperture in just a couple of lines of 
calculations rather than pages of calculations using standard vector diffraction theory. Being able to 
reproduce these results using the asymptotic reciprocity theorem, as opposed to the standard vector theory of 
diffraction used in Jackson or Born and Wolf, provides a new and very powerful techniques for calculating 
the far field diffracted fields. The asymptotic reciprocity theorem provides a clean and easy to follow recipe 
for calculating these diffracted fields for the classic textbook cases as well as for calculating diffracted fields 
for highly non-trivial fields in arbitrarily shaped guiding structures and geometries, such Bessel waves 
incident in cylindrical waveguides. 

Derivation of the Asymptotic Reciprocity Theorem
The reciprocity theorem in physics states that under optimized conditions, the power flow from a wave at a 
point A due to a source at a point B is equal to the power flow at B due to a source at A. Reciprocity 
theorems find their way into all sorts of fields of physics. In electrodynamics, reciprocity is usually 
attributed to Lorentz who made extensive use of it in studying antennae. In this thesis the reciprocity 
theorem will be used to study vector x-ray diffraction from the end of a waveguide. 
Starting from Maxwell's equations
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where . Equations and govern the fields generated by the sources . The method relies on introducing 

the auxiliary fields called connecting fields generated by the sources  and are found in an analogous way 
from Maxwell's equations

The source  generates the fields  and  and a source  of the same frequency gives rise to the fields  

and . Next use the identity

Since  and  (for non-magnetic media,  insertion of equations and into equation 
yields:

Rearranging equation exploiting the commutativity of the dot product, one obtains:

A similar treatment of  gives

Subtracting equations and produces the reciprocity theorem in differential form:

Integrating equation over a large volume V bounded by a surface S, one can express the reciprocity theorem 
in integral form. It follows that

and by the divergence theorem, the right hand side of equation may be transformed to an integral over the 
surface S which bounds the volume V. Therefore,
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where  is a unit vector normal to a patch of surface area described by  such that . 

The LP  Modes at the Waveguide Exit and Vector Diffraction 
Theory
Having excited modes and propagated them down the waveguide, one will now study how the modes leave 
the waveguide and couple to the outside world. This amounts to calculating the diffraction pattern produced 
on a "detector" far from the waveguide. The diffraction pattern, is a Fraunhoffer diffraction pattern, similar 
to the diffraction pattern produced by a plane wave incident on a circular aperture. Knowing the electric 
field at the exit of the waveguide and using the asymptotic reciprocity theorem (ART) derived in section 5.2, 
equation , the diffracted fields will be calculated. The intensity of radiation for a plane wave incident on the 
waveguide exit will also be calculated using the asymptotic reciprocity theorem and compared to the well 
known result given in such texts as Jackson [Jackson], Arfken [Arfken], or Born and Wolf [Born and Wolf]. 
Being able to reproduce these results using the asymptotic reciprocity theorem, as opposed to the classic 
vector theory of diffraction used by Jackson, Arfken, and Born and Wolf, provides a new and very powerful 
techniques for calculating the vector diffraction fields at a distant point on a detector. The vector theory of 
diffraction is very difficult to apply in all but a few specialized circumstances. The asymptotic reciprocity 
theorem provides a clean and easy to follow recipe for calculating these diffracted fields. 
Recalling that the asymptotic reciprocity theorem is given by ,

For source free regions, , and thus the right hand side of equation vanishes. Thus the ART becomes:

Consider a surface S. Let the length, from , to the detector be given as  (with  being the 

length of the waveguide and where .) Let the surface S  be located at the waveguide exit, surface S

 be located at a distance  away from the waveguide entrance, and the remaining surfaces (shown in 
dashed lines) be surfaces at infinity as shown in figure 5.1. 
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The surfaces S  (at the waveguide exit) and S  (at infinity) used to calculate the Fraunhoffer diffracted 

fields at a detector at a distance  from the waveguide exit. The waveguide has a length , and 

at the waveguide exit are superpositions of LP mode fields. The connecting fields ( ) are used determine 
the diffracted fields through equation .

The diffracted fields will propagate in the forward direction in space. The remaining surfaces will see a zero 
net power flow. Since the plane wave has a some spacial extent these other surfaces are located at infinity 
and there is no net flow of energy through them. The integral equation may be split into two pieces, one over 

S  and one over S  Thus,

Letting  be the electric field at the waveguide exit, that is, one (or a superposition) of the LP  modes and 

 be the diffracted electric field that needs to be calculated. Further, one lets  be the connecting field 

that will be used to connect the electric field at the waveguide exit to the diffracted electric field at . 
The choice of the connecting field is dictated purely by convenience. A good choice for the connecting field 

is a plane wave of unit amplitude and wave vector  where  (the -component of the connecting field 
wave vector) is negative. Thus one has for the connecting field,

and without loss of generality, let the connecting field wave vector lie in the  plane. Hence,
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Next, one expands the connecting field in terms of Bessel functions, since the fields at the waveguide exit 

are in terms of the LP  Bessel modes. For  the connecting field takes on the following form 

(evaluating the field at ):

where  is a dimensionless parameter proportional to  Recognizing that  can be 
expanded as a Bessel series, one obtains

Equation is the form of the connecting field that will be used to calculate the diffracted electric field at the 

surface S  
The electric field at the waveguide exit is needed in order to calculate the surface integral over the surface S

 on the left hand side of equation . Recall from equation that the electric field at the waveguide end is given 

by a superposition of LP  modes evaluated at :

The magnetic field at the waveguide exit (as well as the analogous connecting magnetic field) are obtained 

from Maxwell's equations. To calculate equation , one can proceed by first noting that  and 

 Rewriting equation as

and from equation ,

This allows one to express  as, using equation ,
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Splitting the left hand side of equation into two parts calling them I  and I  respectively, one has

and

Substitution of the expressions for the field at the exit of the waveguide, equation , and the connecting 

magnetic field, equation , allows one to express I  as

Correspondingly, I  can be expressed as

Therefore the left hand side of equation becomes after substitution and integration,

where the  integral has been evaluated using the following

and the fact that  Thus equation becomes after rewriting  over the exit of the 
waveguide

Returning to equation , the right hand side can now be evaluated. Again, the connecting field is dictated 
purely by convenience, so why not choose it to be a superposition of plane waves with unit amplitude at 
infinity. Carrying out the necessary algebra and integration in an analogous manner to that described above, 
produces for the right hand side of equation 

where the only non-vanishing contributions arise only when  Equating equations and produces the 
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diffracted fields that one was seeking.

where one can recall that  was evaluated as in equation . This concludes the goal of this section, namely 
finding an expression for the amplitude of the diffracted electric field. 

Diffraction of a Plane Wave by a Circular Aperture using the 
ART
In this section one checks that the ART approach to vector diffraction theory yields results in agreement 
with the standard theory. Thus one calculates the diffracted fields for a plane wave incident on a circular 
aperture. 

Consider a plane wave incident on a conducting screen with a circular aperture of radius . Using standard 
vector diffraction theory one arrives at (from Jackson [Jackson] ):

where the integration is performed only over the aperture(s) in the screen and  is the total tangential 
electric field in the aperture(s). In performing this integration it is customary to use the approximation that 
the exact field in the surface integrals may be replaced by the incident field. Evaluating equation , using 
standard vector diffraction theory, one finds:

The term  is a spherical wave in free space. It is modified by a constant unit amplitude . The intensity 

of the diffracted radiation , where  is the exit angle that the x-ray makes with 

the normal to the aperture. Lastly the factor  gives the direction of the diffracted field. 
Next one the diffracted field intensity using the ART approach. Consider the plane wave given by equation 

where normalization to 1  produces from before, equations for  with the flow of energy given by 

the Poynting vector, equation . Without loss of generality let  and let the aperture be located at 

. It follows that the electric field is given as:
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and this is the form of the electric field used in order to evaluate the left hand side of equation . Again, 

choosing the connecting field to be given as a plane wave with unit amplitude  as shown in equation .

where again without loss of generality, one can assume that  Thus the connecting electric field 
takes the form

Recalling that the left hand side of equation may be split into two parts, calling them I  and I  in an 
analogous fashion to equations and respectively. Performing the necessary curls of the electric field at the 
waveguide exit and of the connecting electric field produces the following integral over the exit surface of 
the waveguide

where the fact that  and  has been used. The integrals over  and  produce

In an analogous fashion I  can be evaluated to give

so that the left hand side of the ART, equation becomes for a plane wave incident on a circular aperture of 

radius ,

In exactly the same manner, the right hand side of equation can be evaluated to give:

Equating equation to equation yields the amplitude of the diffracted field using the ART:

 is a constant that has the following form:

where  (the connecting field has unit amplitude.) Comparing equation to the results obtained in 
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equation , one can see some remarkable results. Recalling equation gives the diffracted electric field for a 
plane wave incident on a circular aperture as

Using the ART, the amplitude of the diffracted field is given by equation 

Here one should note that there is an overall normalization constant between the two results that depends on 
how the normalization was performed. 
Here is the remarkable result, namely that standard vector diffraction theory and the ART yield the exact 

same result for the intensity of the diffracted fields (recalling that the intensity )  The diffracted 
field, using vector diffraction theory, is very difficult and cumbersome to apply except in highly idealized 
conditions, for example a plane wave incident on a circular aperture . The ART is very easy and general 
enough to apply to highly idealized (plane waves incident on circular apertures) as well as very non-
idealized conditions, namely those of Bessel wave fields incident on a circular aperture at the waveguide 
exit. The ART provides a clean and quick method to calculate these diffracted fields. 

Diffraction Patterns of the LP Modes
Having determined in the last section that the ART approach agrees with standard vector diffraction theory, 
the next step is to return to equation and plot the Bessel diffracted fields. In order to determine the 
diffraction patterns for the LP modes, one must first determine whether the modes will be coherent when 
they reach the end of the waveguide. The individual modes will be coherent across the waveguide exit. The 
interesting question is whether the various modes superposed remain coherent as they propagate down the 

waveguide. Whether the LP modes remain coherent depends on the coherence length  Assuming a wave 
packet given by the uncertainty relation 

where , which is true for . For a characteristic x-ray, , and therefore  
and thus 

For a spread in energy of say  eV, the wave packet will have a longitudinal spread of about 1000Å. 
If two modes become separated by more than this amount they can be considered incoherent. Not only does 

the coherence length depend on , but also on the group velocity of the modes as they propagate down the 

waveguide. The group velocity differs for different LP  modes. Since the LP modes propagate with 

approximately the same , one can assume that the group velocity will not vary appreciably provided the 
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waveguides are very short. Thus for a short waveguide, the LP modes are expected to remain coherent when 
they reach the end of the waveguide. 

In figure 5.2, the intensity profile for a single diffracted LP  mode (weighted by its excitation) is shown, 

while figure 5.3 shows the intensity profile for the first five LP  modes. These was calculated by 
evaluating versus output angle. The intensity is proportional to the square of the diffracted field. For an input 

angle of 0 radians, the beam essentially travels down the length of the waveguide and thus the diffraction 

pattern should be peaked at an output angle of 0 radians. The diffraction peaks from the end of the 
waveguide are correlated to the angle of incidence of the plane wave at the waveguide entrance for short 
waveguides since the axially excited LP modes propagate with few reflections. This is not true for long 
waveguides. 

Intensity profile for an 8 keV Cu K  x-ray versus the output angle (in rad) for a the first LP  mode 

(weighted by its excitation of 70% at 0 rad) incident at the waveguide exit, from equation .
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Intensity profile for an 8 keV Cu K  x-ray versus the output angle (in rad) for a the first five LP  modes 

(weighted by their respective excitations obtained from figure 4.1 at 0 rad) incident at the waveguide exit, 
from equation .

Conclusion
The LP modes that make it to the end of the waveguide are considered coherent. Standard vector diffraction 
theory is the general approach to calculation of the diffracted fields. However, results in the literature refer 
to special cases (incident plane waves, spherical waves, etc.) and not to Bessel modes. The LP modes are 
neither plane nor spherical waves, but Bessel waves. Thus the standard results do not apply and 
modifications to the standard vector diffraction theory are needed. 
An approach to vector diffraction theory inspired by the ART was therefore used as a viable alternative to 
the using standard vector diffraction theory. The vector Bessel diffracted fields were calculated. Further as 

the number of LP  modes increased the diffraction seen had a larger angular spread. This was attributed to 
the mixing of the higher order modes with the low order modes that were excited by the externally directed 
plane wave. 
To ensure that the method was accurate, standard vector diffraction theory and the ART were both used to 
test a special case, namely that of a plane wave incident on a circular aperture. The results using both 
standard vector diffraction theory and the ART. Here, one has new approach to calculating the vector 
diffraction fields. 

The Effect of Surface Roughness on the 
Propagation of X Rays
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Introduction
The versatility of the x-ray waveguide depends in part, on how rough the glass surface is, on average. The 
rougher the surface, the smaller the distance the x rays will propagate in the waveguide. Ideally, one would 
like to have a perfectly smooth surface, as has been assumed thus far. In practice however, there is no 
surface that is perfectly smooth. Some variation of the surface height always exists. From a materials science 
standpoint, one would like to gather surface structural information from thin film deposition techniques. To 
do this, one may utilize many different techniques, one of them being x-ray scattering at grazing incidences. 
The scattering of x rays from a real (non-ideal or rough) interface naturally separates the waves into specular 
(coherent) and non-specular (diffuse) components. The effect of surface roughness is to decrease the 
reflectivity into the specularly reflected beam. There is extensive literature (sources to be listed) on specular 
and non-specular scattering from rough surfaces, that the reader may wish to consult. In all of these sources, 
the calculations of the reflectivities are done for plane surfaces. The waveguides in this thesis are glass 
capillary or cylindrical glass tubes. For these fibers there are no roughness studies. Here one will resort to an 
approximation, which is motivated by the observation that the effect of x-ray intensity loss into the 
specularly reflected beam can be described by an effective absorption of the x-ray by the waveguide 
[Caticha]. In other words, surface roughness will be modeled as an effective addition to the imaginary part 
of the susceptibility. To calculate the loss of x-ray intensity due to photoelectric absorption alone, one 

calculates the imaginary part of the susceptibility and the result of this calculation is used to determine the  
decay lengths. This is what was done in chapter 3 section 6. Section 3.6 made no reference to the actual 
roughness of the glass surface. Both mechanisms, photoelectric absorption and surface roughness contribute 
to the decrease in x-ray intensity. To model the losses due to surface roughness an additional term will be 
added to the imaginary part of the susceptibility. 
For the purpose of this thesis it will be shown that the surface roughness effects on the x rays can be taken 
into account using the Rayleigh approximation for long lateral correlation lengths for the scattering of x rays 
off of plane glass surfaces when the x rays are incident far below the critical angle. Long correlation lengths 
seem more natural since these glass fibers are produced by drawing out a piece of soft glass to form a fiber. 
This would tend to produce long correlation lengths, rather than short. For short correlation lengths there are 
other approximations that may be utilized, such as those of Nevot and Croce [Nevot and Croce]. 
The effects of surface roughness will be introduced as a first order correction to the effect of photoelectric 
absorption explored in chapter 3.6. In this chapter the Rayleigh reflectivity will be introduced and 
calculated, assuming no surface roughness of the glass waveguide. The correction to the imaginary part of 
the susceptibility will be numerically evaluated by comparing the decrease in the reflectivity curve in the 
absence of surface roughness to the reflectivity curve with a known surface roughness contribution. In other 
words, the reflectivity curves for a known amount of surface roughness and for no surface roughness will be 
produced and to the reflectivity curve with no surface roughness, a small correction term to the imaginary 
part of the x-ray susceptibility will be added. This correction term will be numerically varied until the 
known surface roughness reflectivity curve is reproduced. This will give the correction to the imaginary part 

of the x-ray susceptibility due to surface roughness and from this value, new  decay lengths may be 
calculated and compared to those in section 3.6. 
Lastly, it will be shown that the results using a correction term in the imaginary part of the susceptibility will 
coincide with the results of Kimball and Bittel[Kimball and Bittel] using the Rayleigh reflectivity of an x-
ray off of a plane glass surface. From this approximation one will make predictions on the applicability to 
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the cylindrical waveguides studied in this thesis. 

Rayleigh Reflectivity of X Rays From Plane Surfaces
The photoelectric absorption of a waveguide mode as it travels down the guide is due mainly to penetration 

of the mode into the glass. Modes for which  penetrate less and thus experience less absorption as 
was shown in chapter 3. Recall that the absorption coefficients are calculated from the imaginary part of the 

longitudinal wave vector, . From section 3.6 the susceptibility has both a real and an imaginary 
component given by equation 

The imaginary part of the longitudinal wave vector  is given by equation as

This lead to the effective linear absorption coefficient for the LP  modes, equation 

Absorptive losses in the intensity of the x-ray as it travels down the waveguide were calculated in this 
manner, with no regard to the actual roughness of the surface. Rough surfaces also contribute to the loss of x-
ray intensity as the wave travels down the waveguide. Both mechanisms, photoelectric absorption and 
surface roughness contribute to the decrease in x-ray intensity. Therefore, as a first approximation, consider 
surface roughness as a correction to photoelectric absorption. This will amount to recalculating the 
imaginary part of the x-ray susceptibility due to roughness scattering of the x-ray by the plane glass surface, 

using equation , and then calculating the corresponding  decay lengths, which are given as the inverse of 
equation . 

Rayleigh Approximation for Long Lateral Correlation Lengths
Since the waveguides are normally produced by drawing out a piece of soft glass to form a fiber, long 
correlation lengths seem more natural. Therefore, surface roughness effects on the x rays may be taken into 
account using the Rayleigh approximation for long lateral correlation lengths for x rays incident far below 
the critical angle. Using the Rayleigh approximation,

where  is the Fresnel reflection coefficient for a sharp smooth planar surface,  is the normal component 

of the incident wave vector, and  is the mean square surface height distribution, or the roughness. The 
Fresnel reflection coefficient is given by
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where  is the component of the wave vector normal to the surface, and  is 

the component of the transmitted wave vector deep into the medium, , and  is the x-ray 

susceptibility. Clearly the reflectivity, , is dependant on the angle of incidence. Thus, the reflectivity is 
given by

Expanding equation , and substituting the expressions for  and , one obtains 

Equation is the reflectivity of an x-ray off of a plane glass surface. One can plot equation for x rays of 
varying energies versus angle of incidence as shown in figures 6.1 through 6.4. 
Also included in figures 6.1 through 6.4 are the effects of varying the amount of surface roughness for these 

different energies. From figure 6.1, for example, shows Cu K  x rays (with energy 8 keV) incident on a 
glass surface with increasing roughness. One can see that as the surface roughness increases (from 0Å to 
20Å) the net affect is to decrease the surface reflectivity for fixed energy. One could vary both the x-ray 
energy and the amount of surface roughness. In figure 6.2 potassium x rays (with energy 3 keV) are incident 
and again the same pattern is noticeable. As the amount of surface roughness is increased the reflectivity 
decreases. In figures 6.3 and 6.4 sodium (1 keV) and oxygen (0.5 keV) x rays respectively are used. The 
same trend is again shown, namely that for a fixed energy, as the surface roughness increases the surface 
reflectivity decreases. It should also be noted that the critical angle for the x rays incident on the glass 

surface depends on the x-ray susceptibility (equation ) as well as the x-ray energy. For hard (Cu K ) x rays 

the critical angle is approximately  mrad (  degrees), while for soft (O) x rays the critical angle is 

approximately  mrad (  degrees). These critical angles could also have been inferred by inspection 
from figures 6.1 through 6.4, where the reflectivity goes to zero. 
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Reflectivity versus angle for mean square surface height distributions ranging from Å to Å, 

in steps of Å for Cu K  x rays with energy 8 keV. These reflectivity curves were generated by evaluation 
of equation for varying angle of incidence of the x-ray beam on the plane glass surface.

Reflectivity versus angle for mean square surface height distributions ranging from Å to Å, 

in steps of Å for potassium x rays with energy 5 keV. These reflectivity curves were generated by 
evaluation of equation for varying angle of incidence of the x-ray beam on the plane glass surface.
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Reflectivity versus angle for mean square surface height distributions ranging from Å to Å, 

in steps of Å for sodium x rays with energy 1 keV. These reflectivity curves were generated by evaluation 
of equation for varying angle of incidence of the x-ray beam on the plane glass surface.

Reflectivity versus angle for mean square surface height distributions ranging from Å to Å, 

in steps of Å for oxygen x rays with energy 522 eV. These reflectivity curves were generated by 
evaluation of equation for varying angle of incidence of the x-ray beam on the plane glass surface.

Addition to Photoelectric Absorption, Method of Effective 
Susceptibility
Since the effect of surface roughness is to decrease the surface reflectivity, by virtue of the small imaginary 
part of the x-ray susceptibility, one can assume that this is akin to the decrease in surface reflectivity due to 

photoelectric absorption. Thus, to calculate the  decay lengths of the x rays one starts by assuming that the 
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linear absorption coefficient contains two terms, one due to photoelectric absorption and due to surface 

roughness. Recalling the definition of the linear absorption coefficient for glass, , one can now 

define an effective  which contains a contribution from the effect of photoelectric absorption and a 
contribution from the effect of surface roughness. 

where  is the contribution from photoelectric absorption and  is the contribution from surface 
roughness. Following, in a completely analogous manner to the derivation of equation of chapter 3, the 
imaginary part of the longitudinal component of the wave vector may be written in terms of the 
contributions due to photoelectric absorption and surface roughness. Thus the imaginary part of the 
longitudinal component of the wave vector is given as:

Since, by definition, the linear absorption coefficient for the LP  modes in the glass due to photoelectric 

absorption is , one can define the linear absorption coefficient for the LP  

modes in the glass due to surface roughness as . This produces

In order to include the effects of surface roughness, one needs to calculate  from equation . First, one 

starts by plotting the reflectivity (versus angle) for two cases. The first case is for Å of surface roughness 

and the second is for a known amount of surface roughness, for example, Å. Here, Cu K  x rays are used 
for the example and the reflectivities are calculated according to equation . In order to calculate the effective 

susceptibility and thus the linear absorption coefficient for an LP  mode, through equation , one varies the 
imaginary part of the susceptibility in a known manner. If the assumption that surface roughness effects can 
be modeled as an addition to the effects of photoelectric absorption, then as one varies the imaginary part of 
the susceptibility the reflectivity curve for the known amount of surface roughness should be reproduced. In 

other words, from the reflectivity curve with Å of surface roughness, a value for the imaginary part of the 
susceptibility was chosen and the decrease in the reflectivity was calculated (and plotted according to 

equation ). If the value of the susceptibility chosen was correctly then the reflectivity curve with Å of 
surface roughness should decrease towards the reflectivity curve with the known amount of surface 
roughness. At a particular value for the susceptibility the curve with a known amount of surface roughness 

should be reproduced. The  that made the Å reflectivity curve match the Å is the contribution to 
photoelectric absorption that was being sought. In figures 6.5 and 6.6, numerical methods were used to vary 
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the imaginary part of the susceptibility until the reflectivity with known amount of surface roughness was 
obtained from the curve with no surface roughness. Once the contribution to the imaginary part of the 

susceptibility is known, the new linear absorption coefficients, , may be calculated. From equation the 

effective linear absorption coefficients can be calculated and thus new  x-ray decay lengths. 

Surface reflectivity for 5Å surface roughness for copper K  x rays versus angle (in degrees). Also included 
is the surface reflectivity for 0Å of surface roughness. This curve has been produced by successive 

iterations of the variable imaginary part of the x-ray susceptibility. The overlap of the two curves for 

 produces the desired result, namely the desired contribution of surface roughness to the decrease 

in reflectivity. From this effective  one This allows one to recalculate the  decay lengths based on 
equation .
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Surface reflectivity for 10Å surface roughness for copper K  x rays versus angle (in degrees). Also 
included is the surface reflectivity for 0Å of surface roughness. This curve has been produced by successive 

iterations of the variable imaginary part of the x-ray susceptibility. The overlap of the two curves for 

 produces the desired result, namely the desired contribution of surface roughness to the decrease 

in reflectivity. From this effective  one This allows one to recalculate the  decay lengths based on 
equation .

From figures 6.5 and 6.6, for  and for Cu K  x rays with an energy of 8 keV, the contribution due to 
surface roughness through the imaginary part of the x-ray susceptibility may be calculated. This gives a 

value of  for 5 and 10Å of surface roughness. For x rays in borosilicate glass, one 

finds 9.97 cm  and 72.16 cm  (from chapter 3.6). Therefore equation may be 

evaluated and the new  decay lengths with surface roughness and photoelectric absorption effects 

included, for several modes of Cu K  x rays may be calculated as is shown in tables 6.1 and 6.2. 

 

\caption{Linear absorption coefficients for copper x rays of energy 8 keV due to 5 angstroms of surface 
roughness and photoelectric absorption.\label{key} } 

L 1 2 3

0

1

2

\caption{New (1/e) decay lengths for copper x rays due to 5 angstroms of surface roughness and 
photoelectric absorption.\label{key} } Table 6.2 shows the propagation lengths for 5Å of surface roughness 

for Cu K  x rays incident in a glass capillary. These propagation lengths may be compared with pure 
photoelectric absorption, that was calculated in chapter 3. From section 3.6 with pure photoelectric 
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absorption one calculated the  decay lengths, and these are shown again in table 6.3. 

L 1 2 3

0

1

2

\caption{(1/e) decay lengths for copper x rays due to photoelectric absorption only.\label{key} } 
Comparison of tables 6.2 and 6.3 show that when surface roughness effects are taken into account, the x-ray 
does not propagate as far as it would if there were a smooth waveguide surface. Let's consider again for 

example, the LP  mode for the Cu K  x rays. The  decay length for the LP  mode, from table 6.3, is 
approximately 3700 meters for pure photoelectric absorption. This is a very large propagation distance for 

the x-ray to travel. Incorporating the effects of photoelectric absorption and surface roughness, the  decay 

length for the LP  mode, from table 6.2 is approximately 3100 meters. This too is a striking result and is 
probably not a realizable result in a practical x-ray waveguide. It does show that surface roughness does 
affect the propagation of the x-ray. However, surface roughness probably is not a significant effect in these 
waveguides. These large propagation distances are most likely due to the low order modes being contained 
entirely within the waveguide, and thus the low order modes experiences very little penetration into the glass 
and see very little of the rough surfaces since they undergo very few reflections. Whereas the higher order 
modes do not propagates as far since they undergo more reflections off of the glass surface. The more 
reflections the x-ray undergoes the more likely it is to be lost due to absorption by the glass or diffuse 
scattering by the rough surface. 

Photoelectric Absorption and Surface Reflectivity, Method of 
Kimball and Bittel
Following the procedure outlined in the paper by Kimball and Bittel [Kimball and Bittel], one can examine 
the effects of rough surfaces by using the Fresnel reflectivity. The Fresnel reflectivity can be derived in the 

same manner as section 5.2, but with out the exponential decay term. Again, let  be the refection 

coefficient for a sharp smooth surface,  be the normal component of the incident wave vector, and let  is 
the mean square surface height distribution, or the roughness. The Fresnel reflection coefficient is given by 
equation :

where  is the component of the wave vector normal to the surface, and  

is the component of the transmitted wave vector deep into the medium, , and  is the x-ray 
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susceptibility. Clearly the reflectivity, , is dependant on the angle of incidence. The Fresnel reflectivity is 
given by:

Expanding equation , and substituting the expressions for  and , one obtains:

Surface roughness decreases the specular reflection coefficient,  by . Thus the specular reflection 
coefficient is given by:

where  needs to be evaluated. Kimball and Bittel give the results for  by the following expression:

The dimensionless parameters r  and r  are proportional to the range of the roughness and given by the 
expressions:

where  characterizes the roughness range and is related to the lateral correlation length of the roughness 

and the lateral distance , the x-ray travels in the medium while it is being reflected. Furthermore, several 
parameters pertinent to the geometry of the fiber need to be introduced and defined. The ratio of the input 

angle to the critical angle is defined as , while  is defined as the ratio of the mean square surface height 

distribution  to the glancing angle penetration depth,  (how far into the glass fiber the x-ray travels into 

the surface perpendicularly while it is being reflected.) Further, the glancing angle penetration depth  can 

related to the speed of light in vacuum and to the plasma frequency for borosilicate glass. Thus £  becomes:
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where the plasma frequency for borosilicate glass was found, in chapter 2, to be 35.1 eV and thus  56.1 

Å. Therefore using equation for  and equation for the surface roughness correction, equation may be 

plotted for various x-ray energies as shown in figures 6.7 and 6.8. Figures 6.7 and 6.8 are for Cu K  x rays 
with an energy of 8 keV. Figure 6.7 is for no surface roughness and 5Å of surface roughness, while figure 
6.8 is for 10Å of surface roughness. Here one can notice that as the height of the rough surface increases the 
specular reflection coefficient decreases from unity as is expected. This effect is not very dramatic. Further, 
as the magnitude of the surface roughness increases from 5Å to 10Å more of the x-ray is scattered in random 
directions and thus the reflection coefficient suffers a greater decrease for increased surface roughness. 

Plot of the specular reflection coefficient following the method of Kimball and Bittel for 0Å and 5Å of 

surface roughness for copper K  x rays. The upper curve (no surface roughness) was generated by plotting 
equation versus angle of incidence. The lower curve was generated by plotting equation versus angle of 

incidence using equations for the reflectivity and for the surface roughness correction. Surface roughness 
decreases the specular reflection coefficient as expected.
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Plot of the specular reflection coefficient following the method of Kimball and Bittel for 0Å and 10Å of 

surface roughness for copper K  x rays. The upper curve (no surface roughness) was generated by plotting 
equation versus angle of incidence. The lower curve was generated by plotting equation versus angle of 

incidence using equations for the reflectivity and for the surface roughness correction. Surface roughness 
decreases the specular reflection coefficient as expected.

Comparison of Variable X-ray Susceptibility Method to the 
Method of Kimball and Bittel
Next, one would like to compare the methods of calculating the surface roughness as a correction to the 
imaginary part of the x-ray susceptibility from section 6.2 and the decrease in the specular reflection 
coefficients due to surface roughness following the method of Kimball and Bittel. In figure 6.9 a mean 

surface height distribution of 5Å was used for Cu K  x rays incident in borosilicate glass. The upper two 
curves in figure 6.9 were obtained by plotting equation (effective susceptibility method) and equation 
(method of Kimball/Bittel). Both of the upper two overlaid reflectivity curves are for 0Å of surface 
roughness. To compare the two methods of effective susceptibility and of Kimball/Bittel, equations and 
were both evaluated for various angles of incidence. The lower curve (method of Kimball/Bittel) was 
obtained by plotting equation for 5Å of surface roughness versus angle of incidence of the x-ray beam 
according to equation with the surface roughness correction given by . The second, lower curve (effective 
susceptibility) was obtained by numerically varying the susceptibility, using equation , until the reflectivity 
of a known amount of surface roughness was obtained, in this case 5Å. This curve, the 5Å of surface 
roughness produced by varying the x-ray susceptibility, was shown previously in figure 6.5. Here it is 
overlaid against the curve produced by the method of Kimball/Bittel. One can notice the agreement between 
the two methods. For a known amount of roughness, it seems that modeling the effect of surface roughness 
as a correction to the effect of photoelectric absorption is valid. The discrepancy between the two methods 
may be attributed to the precision in the numerical approximation of the imaginary part of the susceptibility. 
This needs to be addressed with further studies. 

Of course, one does not have to use hard Cu K  x rays. One could decrease the x-ray energy from say hard 
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Cu K  x rays with energy 8 keV to soft O x rays with energy 0.5 keV and see if the two methods are still 
equivalent. This is what is shown in figures 6.10 to 6.12. From figures 6.10 through 6.12 one can see that 
again the two methods yield exactly the same results. By the method of Kimball/Bittel one calculates the 
decrease in the specular reflection coefficient due to surface roughness by evaluating equation . The Fresnel 
reflection coefficient, equation , is evaluated for a known amount of surface roughness. For perfectly smooth 

surfaces,  is zero and equation is equivalent to equation . For a known amount of surface roughness, the 
reflectivity is decreased and this decrease is calculated by evaluating equations and . 
The assumption that the rough surface contributes to an affective absorption seems to be valid. In both 
instances one can conclude that whether the x-ray is scattered (reflected) by the rough surface and this 
specular reflectance calculated (as shown by Kimball and Bittel) or lost (scattered) and simply treated as 
another instance of loss due to absorption, one arrives at the same result. 

Plot of the reflectivity versus angle of incidence for Cu K  x rays with energy 8 keV. The upper two curves 
were obtained by plotting equation (effective susceptibility method) and equation (method of Kimball/
Bittel). Both of the upper two overlayed reflecticity curves are for 0Å of surface roughness. The lower 
curve (method of Kimball/Bittel) was obtained by plotting equation for 5Å of surface roughness versus 
angle of incidence of the x-ray beam. The other lower curve (effective susceptibility) was obtained by 

numerically varying the susceptibility, using equation , until the reflectivity of a known amount of surface 
roughness was obtained. This curve was shown previously in figure 6.5. Here it is overlayed against the 
curve produced by the method of Kimball/Bittel. One can see the agreement between the two methods.
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Plot of the reflectivity versus angle of incidence for potassium x rays with energy 3 keV. The upper two 
curves were obtained by plotting equation (effective susceptibility method) and equation (method of 

Kimball/Bittel). Both of the upper two overlayed reflecticity curves are for 0Å of surface roughness. The 
lower curve (method of Kimball/Bittel) was obtained by plotting equation for 5Å of surface roughness 

versus angle of incidence of the x-ray beam. The other lower curve (effective susceptibility) was obtained 
by numerically varying the susceptibility, using equation , until the reflectivity of a known amount of 
surface roughness was obtained. One can see the agreement between the two methods for an energy 

between those of hard and soft x rays.
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Plot of the reflectivity versus angle of incidence for sodium x rays with energy 1 keV. The upper two 
curves were obtained by plotting equation (effective susceptibility method) and equation (method of 

Kimball/Bittel). Both of the upper two overlayed reflecticity curves are for 0Å of surface roughness. The 
lower curve (method of Kimball/Bittel) was obtained by plotting equation for 5Å of surface roughness 

versus angle of incidence of the x-ray beam. The other lower curve (effective susceptibility) was obtained 
by numerically varying the susceptibility, using equation , until the reflectivity of a known amount of 
surface roughness was obtained. One can see the agreement between the two methods for soft x rays.

Plot of the reflectivity versus angle of incidence for soft oxygen x rays with energy 0.5 keV. The upper two 
curves were obtained by plotting equation (effective susceptibility method) and equation (method of 

Kimball/Bittel). Both of the upper two overlayed reflecticity curves are for 0Å of surface roughness. The 
lower curve (method of Kimball/Bittel) was obtained by plotting equation for 5Å of surface roughness 

versus angle of incidence of the x-ray beam. The other lower curve (effective susceptibility) was obtained 
by numerically varying the susceptibility, using equation , until the reflectivity of a known amount of 
surface roughness was obtained. One can see the agreement between the two methods for soft x rays.

Conclusion
The waveguides in this thesis were glass capillary tubes. One resorted to an approximation, which was 
motivated by the observation that the effect of x-ray intensity loss into the specularly reflected beam could 
be described by an effective absorption of the x-ray by the waveguide. In other words, surface roughness 
was modeled as an effective addition to the imaginary part of the susceptibility It seems reasonable that the 
Rayleigh reflectivity is an adequate approach for long lateral correlation lengths in these pulled fibers. 
Further one finds that as the mean surface height distribution of the surface increases the x-ray intensity 
decreases and this decrease can be modeled as a correction to the imaginary part of the x-ray susceptibility. 
This correction was added to the previously determined effect of photoelectric absorption and the two effects 
contribute to the loss of x-ray intensity as the x-ray propagates in the waveguide. It can also be concluded 
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that for small angles of incidence, , surface roughness does not seem to have much of an effect on 
the propagation of the x-ray. The assumption that the rough surface contributes to an affective absorption 
seems to be valid. In both instances one can conclude that whether the x-ray is scattered (reflected) by the 
rough surface and the specular reflectance calculated (as shown by Kimball and Bittel) or lost (scattered) 
and simply treated as another instance of loss due to absorption, one arrives at the same result. 

Summary and Conclusions

Summary of Conclusions
The purpose of this thesis was to develop the theory for describing the performance of cylindrical glass 
capillaries as waveguides for x rays. The propagating modes were obtained by solving Maxwell's equations. 
Thus, polarization effects are fully taken into account. The transverse fields were expressed in terms of the 
longitudinal fields and wave equations for the longitudinal electric and magnetic fields were solved by 
separation of variables. Next boundary conditions on the wave function solutions were imposed and the 

characteristic equation for the modes was derived. For the  case the modes were found to exhibit 

properties of the TE and TM modes in the limit of small angles of incidence and for all values of . The 

higher order modes ( ) are neither TE or TM but are termed hybrid and denoted by EH  and HE . 

In the limit that  is much smaller than unity, the hybrid EH  and HE  modes were found to obey the 

same characteristic equation for the change of indices . This degeneracy was exploited and used to 
superpose the hybrid circular modes to form a set of linearly polarized modes. One could associate with the 

modes an orbital angular momentum (the -dependence of the electric and magnetic fields) and a spin. The 

modes have a total angular momentum of . The right or left circular polarization (the rotation of the 
electric fields at a given point in space) is associated with the helicity or spin of the photons. Spin is usually 
associated with quantum mechanics. Here one has a purely classical example that involves spin. The 

circularly polarized hybrid EH  and HE  modes were superposed to form a set of linearly polarized or 

LP  modes. There were found two sets of LP modes denoted respectively LP  and LP . Only the LP  

modes were investigated since the LP  modes are simply a 90  rotation of the LP  modes. 

The real part of the electric field for various LP  modes was plotted for a waveguide of an arbitrary radius. 

For the low order LP  family of modes it was found that the energy flow was at the center of the 
waveguide and decreased as one moved from the center of the waveguide toward the glass boundary along 

any radial direction. For the higher order modes, , it was found that the energy flow was not near the 
center of the waveguide. It was found by inspection that most of the energy was flowing at increasing radial 
distances from the center of the waveguide and ultimately decreased as one approached the glass boundary 
along any radial direction. 
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There are two energy loss mechanisms that were studied. Photoelectric absorption effects were investigated 
and losses due to photoelectric absorption were calculated. This was done by calculating the imaginary part 
of the dielectric susceptibility. The imaginary part of the wave vector was then calculated and used to 

calculate the  decay lengths for the x rays as they travel down the fiber. It was found that the lowest order 

modes (the LP ) propagate on the order of 10 kilometers for higher energy x rays, while for lower energy 
x rays the propagation distances were on the order of hundreds of meters. Thus for typical values of the 
roughness these losses are minimal. However, localized defects such as obstructions in the waveguide, 
waviness over long scales, bending, etc., can actually be more dominant. While these propagation distances 
may be a shocking result, in practical x-ray fibers this is probably not a realizable feature. 
The excitation of various LP modes that were excited by an externally directed plane wave were calculated. 
In order to calculate the excitation, the LP modes and the externally directed plane wave used to excite these 

modes needed to be normalized to an arbitrary flux of energy of 1  into the cross sectional area of the 

waveguide. The x-ray energy was varied for the lowest order, LP  mode. Here it was found that the 

excitation of the LP  mode is 70% and is independent of the x-ray energy. Since the critical angle 
increases with decreasing x-ray energy, one finds for soft x rays the input angle cone is larger than the input 
angle cone for hard x rays. As one approaches the critical angle for a given x-ray energy, the x-ray 
undergoes more reflections and has a higher probability of being absorbed by the glass capillary. 

The number of modes that are excited was also investigated for the case of the lowest order LP  mode. It 
was found that for an arbitrary value of the excitation, namely greater than 1%, 6 modes propagate at exactly 

0 radians. At increasing angles of incidence higher order modes are also excited and thus propagate down 
the waveguide. In this thesis the x-ray beam is highly collimated and in practice the x-ray beam has an 
angular divergence some mode mixing is bound to occur. 
In chapter 5, the LP modes that make it to the end of a short waveguide were considered coherent. Standard 
vector diffraction theory is the general approach to the calculation of the diffracted fields. However, results 
in the literature refer to special cases (incident plane waves, spherical waves, etc.) and not to Bessel modes. 
The LP modes are neither plane nor spherical waves, but Bessel waves. Thus the standard results do not 
apply and modifications to the standard vector diffraction theory were needed. An approach to vector 
diffraction theory inspired by the ART was therefore used as a viable alternative to the using standard vector 
diffraction theory. The vector Bessel diffracted fields were calculated. One finds that the Fraunhoffer 
diffraction patterns produced are intimately tied to how the modes were excited at the waveguide entrance 
for very short waveguides. In other words, if the modes were excited by an externally directed plane wave at 

0 radian angle of incidence then the diffraction patters produced at the waveguide exit were peaked in the 

forward direction at the same angle. Further, if one used, say an incident plane wave directed at 20 radians, 

the peak of the diffraction pattern would be in the forward direction and peaked at 20 radians. Further as 

the number of LP  modes increased the diffraction seen had a larger angular spread. This was attributed to 
the mixing of the higher order modes with the low order modes that were excited by the externally directed 
plane wave. 
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To ensure that the method was accurate, standard vector diffraction theory and the ART were both used to 
test a special case, namely that of a plane wave incident on a circular aperture. The results using both 
standard vector diffraction theory and the ART were identical. Here, one has new approach to calculating 
the vector diffraction fields. 
Chapter 6 investigated the effects of rough surfaces on the transmission of the x rays down the cylindrical 
glass capillaries. One resorted to an approximation, motivated by the observation that the effect of x-ray 
intensity loss into the specularly reflected beam is described by an effective absorption of the x-ray by the 
waveguide. In other words, surface roughness can be modeled as an effective addition to the imaginary part 
of the susceptibility It seems reasonable that the Rayleigh reflectivity is an adequate approach for long 
lateral correlation lengths in these pulled fibers. Further one finds that as the mean surface height 
distribution of the surface increases the x-ray intensity decreases and this decrease can be modeled as a 
correction to the imaginary part of the x-ray susceptibility. This correction was added to the previously 
determined effect of photoelectric absorption and the two effects contribute to the loss of x-ray intensity as 

the x-ray propagates in the waveguide. It can also be concluded that for small angles of incidence, , 
surface roughness does not seem to have much of an effect on the propagation of the x-ray. The assumption 
that the rough surface contributes to an affective absorption seems to be valid. In both instances one can 
conclude that whether the x-ray is scattered (reflected) by the rough surface and the specular reflectance 
calculated (as shown by Kimball and Bittel) or lost (scattered) and simply treated as another instance of loss 
due to absorption, one arrives at the same result. 

Future Directions
From chapter 4 orbital angular momentum of the LP modes was investigated. Orbital angular momentum 
being displayed by optical beams have been know for about a decade there has been recent interest in these 
light beams. Galvez et al [Galvez] have recently been working on optical beams possessing orbital angular 
momentum as possible systems for N-bit quantum computing. Still others, in particular astronomers 
[Musser], are interested in this property of light. Natural astrophysical processes such as lenslike density 
variations in interstellar gas or perhaps the warped space-time around rotating black holes may twist light 
producing a beam of light with orbital angular momentum. These capillary fibers offer the possibility of 
being able to generate similarly interesting light beams in the x-ray part of the spectrum. 
As seen in Chapter 5 there is a distinct possibility for the existence of a diffractionless Bessel Beam. Non-
diffacting beams, introduced by Durnin in 1987, have seen considerable study in past years [Durnin], 
[Bouchal]. Using the ART one can now focus not on Fraunhoffer diffraction but on Fresnel diffraction. If 
one can generate, by choosing the entrance, propagation and exit conditions appropriately, namely exciting a 

LP  mode by a plane wave incident at 0 radians on a short waveguide, a non-diffracting single mode 
Bessel Beam may be produced. This may have very important technological and theoretical implications. 
For example, one may be interested in how far this single mode Bessel Beam will propagate in free space 
before it begins to diverge and spread, the Fresnel diffraction limit. This is a highly non trivial process. In 
order to attempt a solution to this problem, one will have to study vector Fresnel diffraction. Here the current 
use of standard vector diffraction theory would prove to difficult to apply and therefore a solution would be 
hard to generate. The ART may provide a solution to this problem with minimal approximations and 
calculations. 
Next, one could observe that the geometry of the fibers used in this thesis were strictly cylindrical and very 
close to ideal. Other waveguiding structures are possible such as waveguides with hexagonal cross-sections. 
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An investigation of how edges and non-cylindrical structures will effect the reflection of the x-rays and 
ultimately their propagation down the longitudinal axis of the waveguide. This would be an interesting 
question that this thesis has set the stage to answer. 
From here, one could envision other interesting scenarios. Effects such as waveguide curvature (both 
purposeful and accidental) and waveguide tapering (thinning of the waveguide in the direction of x-ray 
propagation) have on the x-ray as it propagates down the waveguide. Purposeful sources of bending and 
tapering the waveguide include the study of focusing many capillaries to one spot. 
It is possible to excite the LP modes in the waveguide with something other than a plane wave. Since the LP 
modes were constructed by a superposition of circularly polarized modes, one could try to excite modes with 
a circularly polarized wave at the waveguide opening. Thus one could attempt to preferentially excite say, 
the left circularly polarized modes rather than the right circularly polarized modes. Instead of a straight 
capillary waveguide what would happen if one were to twist the fiber around its longitudinal axis? 
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