
Electrostatic Forces and Fields 
 
Coulomb’s Law 
 
 Electric charge is an intrinsic property of matter, in exactly the same fashion as 

mass.  At the atomic level electric charge comes in three types and is carried by the three 

elementary particles.  These charges are the proton (a positive electric charge), the 

electron (a negative electric charge), and the neutron (a zero electric charge.)  These 

elementary particles are the building blocks for all matter and typical atomic structure as 

revealed by experiments has a heavy dense nucleus (composed of protons and neutrons) 

surrounded by electrons in specific probability distributions, or electron clouds called 

allowed orbitals.  Atoms in general are electrically neutral meaning that the number of 

protons is equal to the number of electrons, but since the electrons are loosely bound the 

nucleus, they may be easily added to or removed from the atom.  Ionization of an atom is 

the process by which electrons are added or removed with minimal inputs of energy.  If 

electrons are removed from an electrically neutral atom, a negative ion is formed.  

Conversely, if electrons are added to an electrically neutral atom, a positive ion is 

formed. 

 Experiments with electric charge demonstrate a number of phenomena.  The first 

of which is that the magnitude of the charge on the proton and the electron are the same 

and this value, called the smallest amount of free charge found in nature, is found to be 

that of the charge on the electron.  Thus one elementary charge has a magnitude 

of Ceep 19106.1 −− ×=== .  There are several implications that can be made here, and 

can be seen to hold true experimentally.  The first is that electric charge is quantized, or 



occurs in only discrete quantities, namely −= enQtotal , where n is the number of discrete 

elementary charges, e, that make up the total charge Qtotal.  The second implication that 

can be made is there could be a collection of more elementary charges that exist only in 

bound states and these could make up an elementary charge.  For example, it is found that 

quarks are fundamental particles that are the constituent particles out of which that make 

up protons and neutrons are made.  Quarks exhibit fractional electric charges in units of 
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±± and never occur as a single free unit of charge.  Quarks only occur as part 

of a bound system.  

In addition, it is experimentally found that if two charges Q1 and Q2, carry the 

same algebraic sign, the charges will be repelled away from each other, while if they 

carry the opposite algebraic sign they will be attracted.  This implies that there must be a 

force that exists between electric charges.  This form of this force law was experimentally 

determined by Coulomb in the 1870’s and bears his name.  Coulomb’s experiment 

involved placing amounts of charge, Q1 and Q2 on two isolated insulating spheres 

separated by a known distance r.  A charge Q1 was placed on a dumbbell that was free to 

rotate about a wire through the center of the dumbbell.  The second insulating sphere with 

charge Q2 was brought close to Q1 and would cause Q1 to rotate about the wire.  The 

torque that was created is related to the magnitude of the electrostatic force that exists 

between Q1 and Q2.  Coulomb found two important results from his experiments.  The 

first, given a fixed amount of charge Q1 and Q2 on each of the spheres, the magnitude of 

the electrostatic force varied as the inverse of the square of the distance between the 

centers of the two charges.  Second, for a fixed distance between the charges, the 

magnitude of the electrostatic force varied as the product of the two charges on the 



spheres.  Coulomb’s results can be summarized as follows: 2
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is the center to center distance between Q1 and Q2.  To make this result an equality rather 

than a proportionality, a constant is multiplied on the right hand side, and this constant of 

proportionality is called Coulomb’s constant and has a value of 2

291099.8
C
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can be experimentally verified by recreating Coulomb’s experiment as is sometimes done 

in undergraduate physics laboratory classes, keeping either the charges fixed (and varying 

the distance between the charges) or keeping the distance fixed (and varying the amount 

of charge placed on each sphere.)  In either case, graphical analysis will then yield a 

value for Coulomb’s constant.  Therefore, Coulomb’s Law for static distributions of 

charge is generally written as r
r
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, where, r̂ is a unit vector that points 

along the line joining the two charges.  In other words, Coulomb’s Law gives the 

magnitude of the force that exists between the two charges and always points along the 

line joining the two charges.  If there is more than one charge present, Coulomb’s Law 

still applies and the electrostatic force on one charge due to all other charges is the vector 

sum of all of the forces on that charge due to the other charges present.  As one final 

comment, Coulomb’s Law is applicable to point charges (objects that are much smaller 

than the distance between them) that are at rest (static.) 

 

 Example #1 – How big is a Coulomb of Charge? 

Suppose that a two insulating balls are separated by 1.0 m and that a 

charge of 1.0 C is placed on each.  What is the magnitude of the electrostatic force 

felt by one of the spheres? 
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Solution – Applying Coulomb’s Law we find 
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This equates to a weight of about 2.2x109 pounds, given that a weight of 1 

N ~ ¼ pound.  Here we can draw the conclusion that one Coulomb of charge is a 

huge amount and in general we will only see fractions of Coulombs of charge in 

practice.  In other words we will in general see micro-Coulombs (1µC = 1x10-6 C) 

or nano-Coulombs (1nC = 1x10-9 C) of charge. 

 

Example #2 – How many elementary charges are in 1 µC of charge? 

Solution – We take 1 µC of charge and divide this by one elementary charge.  
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Coulomb’s Law for the electrostatic force is also a Newton’s Third Law force.  

To see this, we consider the arrangement of charges shown below and explicitly write out 

the forces that act on each charge. 

 

 

 

 

 

 

 



From this diagram we see that for any two charges, the forces exerted on the charges are 

equal in magnitude and oppositely directed and thus we have 1,22,1 FF
rr

−= , which is 

Newton’s Third Law. 

 Early on in the discussion of electric charge we said that there are three types of 

charge.  Let’s suppose that we have a positive electric charge (a proton) that is separated 

from a negative electric charge (an electron) as would be typically found in a hydrogen 

atom, and let us calculate the electrostatic force felt by either the proton or the electron. 

 

Example #3 – What is the magnitude of the electrostatic force between a 

proton and an electron in a hydrogen atom? 

Solution – To calculate the magnitude of the electrostatic force that exists between 

a proton and an electron in a hydrogen atom, we need to know the separation of 

the two charges.  Typically for a hydrogen atom in its ground state, we have the 

separation between the proton and the electron, known as one Bohr radius,  

0.53x10-10 m.  Applying Coulomb’s Law we find for the magnitude of the 

electrostatic force 

( )
( )

N
m

C
r

eek
r
QQ

kF
C

Nm

ep
ticelectrosta

8
210

219
9

2
,

2
2,1

21 102.8
1053.0

106.11099.8 2

2 −

−

−

×=
×

×
××=

×
== .   

The direction of the electrostatic force that the electron feels due to the proton is 

directed towards the proton and has a magnitude of 8.2x10-8 N, while the 

electrostatic force that the proton feels due to the electron is directed toward the 

electron in accordance with Newton’s Third Law, and has a magnitude also of 

8.2x10-8 N. 



In general when we do problems involving forces we usually have to worry about 

the gravitational force exerted on the objects.  So let’s ask when dealing with elementary 

particles do I have to worry about gravitational forces?  In other words, do I have to 

worry about the weight of theses particles?  To answer this question, we will calculate the 

magnitude of the gravitational force between the proton and the electron in a ground-state 

hydrogen atom and compare this to the electrostatic force calculated above. 

 

Example #4 – The gravitational force between the proton and electron in a 

hydrogen atom 

Solution - To calculate the magnitude of the gravitational force we need to use 

Newton’s Universal Law of Gravity 2
2,1
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r
MMGFgravity = .  Looking up the masses of 

the proton and the electron we find Mp = 1.67x10-27 kg and Me = 9.11x10-31 kg 

respectively.  Using the separation between the proton and the electron in a 

hydrogen atom, we find the magnitude of the gravitational force to be 
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Comparing this to the electrostatic force given above we see 

that 39103.2 ×=
gravity

ticelectrosta

F
F , which implies that the electrostatic force is much larger 

than the gravitational force, by a factor of 1039.  Thus we don’t need to worry 

about the force of gravity when working with elementary particles.  This is not 

true when we have other more massive objects, like coffee cups, balls, and 

airplanes! 



Now, what would happen if we were to somehow release the proton and the electron and 

allow them to move under the influence of the electrostatic force, what would happen? 

 

Example #5 – Colliding a proton and electron 

 Suppose that a proton and an electron are separated by a distance d (maybe d 

could be the typical separation in a hydrogen atom.)  Suppose further that the proton is at 

the origin and that the electron is to the right of the proton by this distance d.  If the 

electron and proton are released from rest at the same time, qualitatively where will the 

proton and the electron collide? 

 Solution – The proton and the electron will experience the same magnitude of the 

electrostatic force.  However, since the proton is more massive than the electron, by 

about a factor of 1881, and thus the accelerations of the proton and the electron will be 

different.  So, let us first calculate the initial accelerations of the proton and the electron. 

From Newton’s Second Law, the acceleration of the proton is 
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.  Since the acceleration of the electron is greater 

than that of the proton, in the same interval of time, the electron will have a greater 

change in velocity and cover a larger distance than the proton.  Therefore, the proton and 

the electron will collide closer to the proton at a distance somewhere between 0 and d/2. 

Be Careful – This acceleration is not a constant of the motion since the force is not 

constant, but changes with distance.  You would not want to use the classical equations of 

motion (valid for constant acceleration) to calculate the position of the collision.  



Equations of motion for this non-constant acceleration could be developed but are beyond 

the scope of this text and unfortunately only a qualitative solution can be given at this 

point. 

 

 So far we have seen Coulomb’s Law and some examples of how to calculate 

magnitudes of the electrostatic force that exists between two objects with charge.  Now 

we will turn our attention to some more sophisticated problems and explore the vector 

nature of Coulomb’s Law in which we apply it to situations involving more than two 

charges.  To do this we will need a strategy.  My strategy is as follows and this 

methodology will be used to solve all of the problems that involve vectors.  First you 

need to pick a convenient coordinate system.  It does not matter what that coordinate 

system is, but the choice should be well suited to the physical situation and you need to 

be consistent when assigning algebraic signs to the vector quantities based upon this 

coordinate system.  Next, I will draw all of the vectors that represent the physical 

quantity of interest on the object of interest.  Typically this means that I will pick a 

charge and draw all of the forces, say, that act on that charge.  I will then break up those 

physical quantities represented by the vectors into their components (based on the choice 

of coordinate system) and sum the vectors algebraically to calculate the net components 

associated with a particular physical quantity in a particular direction.  I will then report 

the result as a vector (using unit vector notation) or as a magnitude and a direction 

(measured with respect to some convenient starting point.)   

Alright, that’s a whole bunch of words.  How do you actually apply this method 

to solve problems?  To answer that, we will look at two specific examples.  The first is a 



one-dimensional problem involving three charges in a line and the second is a two-

dimensional problem involving charges located on the vertices of a right-triangle. 

 

Example #6 – Three charges in a line 

What is the net electrostatic force on the leftmost charge shown below due to the 

other two charges, where Q1 = -8 µC, Q2 = 3 µC, and Q3 = -4 µC? 

Solution - Given the diagram below we choose the origin of the coordinate system to 

be at the leftmost charge and select to the right as the positive x-direction.   
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Drawing the forces on the leftmost charges we can apply Coulomb’s Law and 

write 
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The symbol used here means the electrostatic force on object A due to object 

B.  Thus the net electrostatic force on the leftmost charge is 1.2 N directed along 

the positive x-axis. 
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Example #7 – Three charges at the vertices of a right triangle 

 What is the net electrostatic force on the 65 µC charge due to the other two 

charges shown, where Q1 = 65 µC, Q2 = 50 µC, and Q3 = -86 µC? 
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The forces on the 65 µC charge are as shown above and we need to find the net x- and 

net y-forces.  Thus for the net x- and y-forces we have 
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This gives using the Pythagorean Theorem the net electrostatic force as 
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Now let’s apply what we’ve learned so far to somewhat more complicated examples. 

 

Example #8 – How much charge does it take? 

 The leaves of an “electroscope” are constructed out of two identical balls whose 

mass are 3.2x10-2 kg and these balls hang in equilibrium from two strings of length L = 

15 cm.  When in equilibrium, the balls make a 5o angle with respect to the vertical.  How 

much charge is needed on each sphere to produce this situation? 

Solution – We choose to examine the forces on the left most charge and assume a 

standard Cartesian coordinate system.  The physical representation of the problem 

statement is shown below left.  The forces that act on the mass are the tension force in the 

string, the weight of the mass, and the electrostatic force and are shown below right.   
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Applying Newton’s 2nd Law in the horizontal and vertical directions we find 
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So, we have two equations and two unknowns, namely FT and Q (from FE.)  Substituting 

FT from the summation of the y-forces into the expression in the x-forces, we can solve 

for Q.  This produces ( ) C
k
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needed on each sphere.  In order to perform the above calculation, we have also used the 

fact that the charges are separated by a distance r, one-half of which can be calculated 

from the angle given and the length of the string.  Thus we 

have
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Example #9 – The radioactive decay of . U238
92

In the radioactive decay of uranium , the center of the emerging alpha 
particle  is, at a certain instant 9x10

U238
92

He4
2

-15 m from the center of the thorium daughter 
nucleus .   Th234

90

 
a. What is the magnitude of the electrostatic force on the alpha particle?  (Hint:  In 

spectroscopic notation,  A represents the atomic mass in atomic mass units 
(amu), Z represents the atomic number, and X is the element.)  
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Solution - The magnitude of the electrostatic force is given by Coulomb’s Law and is due 

to the electrostatic repulsion of the protons that make up the alpha particle and 
the thorium nucleus:   
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b. What is the acceleration of the alpha particle?  (Hint:  1 amu = 1.67x10-27 kg.)  
 
Solution -  The acceleration of the alpha particle is found from Newton’s 2nd Law:   
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The Electric Field 

 Most Newton’s Law forces are called contact forces because for an object to 

accelerate because of an applied force, the force has to be applied to the object through 

direct physical contact.  However, some forces, like Gravity and the Electrostatic force 

extend over distances even when the objects do not touch.  These are called “action at a 

distance” forces.  Forces like these are exerted on masses (due to the Force of Gravity) or 

charges (due to the Electrostatic Force) through a field.  To investigate these fields we 

use a test object.  For gravitational fields, we use a test mass mo while for electric fields 

we will use a test charge q0.  Here we will assume that the test charge is positive and very 

small in mass compared to the charge Q whose electric field we want to investigate.  The 

choice of q0 being positive is a convenience and chosen to mirror the results you get from 

studying the motion of masses in a gravitational field.  The fact that the test charge is 

much less massive is so that the acceleration of the test charge is much larger than the 

charge whose field is being investigated.  Since both charges exert equal and opposite 

forces on each other, I would like only the test charge to move and have the field due to 

the other charge be static. 

 Since the electrostatic force will cause q0 to move, if Q is a positive charge, then 

q0 will feel a repulsive force from Q and move away.  If, however, Q is a negative charge, 

then q0 will feel an attractive force and move toward the charge.  The electric field lines 

will then point radially outward from a positive charge and point radially inward toward a 

negative charge as shown below.   

 



Example #10 - The Electric field lines due to a positive and negative electric charge 

investigated using a small positive test charge q0. 
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Electric field lines are pictorial representations of the electric field that exists in 

space due to the presence of a charge.  In other words they represent the lines of force felt 

by q0 due to the interaction of q0 with the electric field due to Q.  Thus the electrostatic 

force on q0 due to Q is exerted through q0’s interaction with the electric field of Q.  The 

electric field surrounds the charge and exists whether or not a test charge is present to 

investigate the field.  This is exactly analogous to a gravitational field.  A gravitational 

field exerts a force on a test mass mo through mo’s interaction with the gravitational field 

of a mass M and the gravitational field of M exists even if there is no test mass present to 

probe this field.  In addition, the electric field lines indicate the direction of the electric 

field at any point in space due to some distribution of charge.  The magnitude of the 

electric field, a vector quantity, has to be determined by the superposition of all the 

electric fields due to all charges present.  WE define the electric field of a point charge as 

the electrostatic force per unit test charge, or
oq
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be written as EqF o
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= .  Thus for a point charge Q, we have for the magnitude of the 

electric field 2r
QkE = and the direction is tangent to the field line at that point in space. 

 Electric field lines can be seen to start on positive charges, extending radially 

outwards, and end on negative charges, pointing radially inward.  The number of electric 

field lines (per unit area of space) is proportional to the magnitude of the electric charge 

present.  In other words, the flux (or number) of electric field lines through an area 

perpendicular to the electric field vector is proportional to the total charge enclosed by a 

surface of area A.  This is called Gauss’ Law and is used to calculate the electric field for 

an arbitrary distribution of charge.  Gauss’ Law can be written as 
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and 

is useful when studying the propagation of electromagnetic radiation, or light.  We will 

apply Gauss’ Law to a couple of situations below, only as illustrative examples, even 

though we will only ever use electric field of a point charge 2r
QkE = as given above.  

Example #11 – What are the electric fields due to a point charge Q, a uniform plate 

of charge Q (per unit area), and a uniform line of charge Q (per unit length) using 

Gauss’ Law? 

Solution  

- For a point charge, Q we choose to have the vector pointing in the direction of the 

electric field due to a positive charge Q as shown above.  First, we find that at a 

fixed distance away, r, the flux of field lines is constant, indicating that the 

electric field is a constant.  Evaluating Gauss’ Law we have 
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, which varies 

as the inverse of the distance squared from the point charge. 

- For a plate of charge Q per unit area we define σ = Q / A, 

and chose the area vector to be in the direction of the 

electric field as shown right.  Evaluating Gauss’ Law we 

have
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and independent of how far you are away from the plate. 

- For a line of charge Q per unit length we define λ = Q / L, and chose the area vector 

to be in the direction of the electric field which 

points radially out from the line of charge as shown 

below.  Evaluating Gauss’ Law we 

have
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the inverse of the distance from the line of charge. 

 

Returning to point charges, we will try to evaluate the electric field at a point P in space 

given some different distributions of charge.  To do this we will use the method outlined 

in the section on Coulomb’s Law for solving vector problems. 
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Example #12 – What is the electric field at point P (located at a distance of 0.4m on 

the y-axis) due to the two charges (Q1 = 7 µC and Q2 = -5 µC) located on the x-axis 

and separated by 0.3 m? 

Solution – Given the diagram below, we draw the electric fields due to the two charges at 

point P. 

 

 

 

 

 

 

Breaking these electric field vectors up into their x- and y-components we find 
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Using the Pythagorean Theorem we can express the net electric field at point P as 
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Example #13 – What is the electric field at a point P (along the positive x-axis) due to 

the electric dipole situated on the y-axis. 

Solution – First an electric dipole is constructed by two equal and opposite magnitude 

charges separated by a distance d between their centers.  Here the distance between their 

centers is d = 2a, where a is the distance the charge is located above and below the x-

axis.  Second, we will need the distance between the charge and where we want to 

evaluate the electric field.  This distance, r, is the same for both charges and is given 

as 22 xar .  Third, given the coordinate system in the diagram, we draw the electric 

field at point P due to the two charges located on the y-axis.  Then we break up the fields 

into their x- and y-components and calculate the net electric fields in the x- and y-

directions. 
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In component form we find for the net electric fields in the x- and y-directions 
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This gives the net electric field in the negative y-direction with magnitude
( )2

3
22

2
xa

Qak
+

.  

In fact this same analysis could be done anywhere along the y-axis and the result will be 



the same magnitude and will point along the negative y-axis.  If we take the limit that the 

point P is at a distance x >> a, the dipole field reduces to 33 22
r
Qak

x
Qak −≈− and the field 

falls off as the inverse of the distance cubed! 

 

In the above two examples we have been given a distribution of point charges and were 

asked to calculate the electric field at a point P in space.  As a last couple of examples in 

this section, let’s take a charge and see what happens as the charge experiences an 

electric field. 

 

Example #14 – The electric field needed to balance a proton against gravity 

What is the magnitude and direction of the electric field needed to balance the weight of a 

proton in the gravitational field of the earth? 

Solution – The weight of the proton points vertically downward towards the earth and has 

a magnitude of mg.  To balance the weight of the proton, the electric force must point 

vertically up, and since the proton carries a positive electric charge, the electric field must 

also point vertically up.  Thus we have pointing vertically up, an electric field of 

magnitude 
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Example #15 – Projectile motion with an electron? 

Suppose that an electron enters a region of uniform electric field (E = 200 N/C) with an 

initial velocity of 3x106 m/s.  What are the acceleration of the electron, the time it takes 



v

E 

L

the electron to travel through the field and the vertical displacement of the electron while 

it is in the field if the length of the region L = 0.1m? 

Solution – From the diagram of the set-up below, we see that a force will accelerate the 

electron vertically down since the electron has a negative charge.  This acceleration will 

be constant, since we are told that the electric field is uniform, and this produces a 

constant force.  Thus the acceleration of the electron is vertically down with  
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.  This force only affects the 

vertical motion of the electron and the horizontal component of the velocity is therefore a 

constant of the motion.  The vertical component of the velocity will change with time.  

The time it takes then, for the electron to traverse the length of the plates is given 

as sm
v
Lt .  In this time the electron is accelerated downward 

toward the positive plate.  Defining y

s
m

x

8
6 103.3

100.3
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==

i to be zero where the electron enters, the vertical 

displacement is ( ) mstay
s
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yf
22813

2
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2
1 1095.1103.31051.3 2

−− ×−=××××−=−= or 1.95cm 

below where the electron entered. 

Comments:  Here we have used the equation of motion developed in the mechanics 

portion of the course valid for motion with constant acceleration.  If we ignore the plates 

as the cause of the force on the electron and further pretend that the electron were not 



charged, but simply a mass m  moving under the influence of gravity, we have a case of 

two dimensional motion, or more specifically projectile motion, here with an electron in 

an electric field. 

 

Example #16 – What was the work done on the electron in example #15 and does 

this equal the change in kinetic energy of the electron? 

Solution – We will tackle this problem in two parts; first we will calculate the work done 

and then we will calculate the final velocity from the equations of motion and compute 

the change in kinetic energy for the electron in this case.  So, the work done by the 

electrostatic force in accelerating the electron is given as 

JmCyqEyFyFW C
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E
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.  

From Example 15, we know that the horizontal component of the electron’s velocity is 

constant, so .100.3 6
s
m

fxv ×=   The final vertical component of the electron’s velocity 

is s
m

s
m

yfy stav 6813 1017.1103.31051.3 2 ×−=×××−=−= − .  Using the Pythagorean 

Theorem, the final magnitude of the electron’s velocity 

is ( ) ( ) s
m

s
m

s
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fyfxf vvv 6262622 1022.31017.1100.3 ×=×−+×=+= .  To see if the work 

done equals the change in kinetic energy we need to compute the change in kinetic 

energy.  The change in the electron’s kinetic energy is 
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which seems to agree pretty well.  Thus, the work done is equal to the change in the 

electron’s kinetic energy as it should by the work-kinetic energy theorem. 

 



This last example brings us to our next topic, the work done in assembling or moving 

charges around in the electric fields of other charges.  We are starting to bridge the space 

between having purely static charges and finally allowing these charges to move, thus 

establishing electric currents and the existence of magnetic fields and forces.  In the next 

chapter we will examine the concept of the electric potential and of electric potential 

energy.  We will start by looking at gravity and recalling what we know about how 

conservative forces give rise to conserved quantities like energy.  Then we will, by 

analogy with gravity, discuss some fundamental concepts in our study of electricity. 


