Physics 110

Spring 2006
Heat - Their Solutions

NOTE: YOU WILL NEED TO LOOK UP THERMAL AND VOLUME EXPANSION COEFFICIENTS FOR VARIOUS MATERIALS!

1. A copper telephone wire has essentially no sag between poles 35 m apart on a winter day when the temperature is $-20^{\circ} \mathrm{C}$. How much longer is the wire when the temperature is $35^{\circ} \mathrm{C}$ on a sunny summer day?

$$
\Delta L=L_{o l d} \alpha \Delta T=35 \mathrm{~m} \times 1.7 \times 10^{-5}\left({ }^{\circ} \mathrm{C}\right)^{-1} \times\left(35^{\circ} \mathrm{C}-\left(-20^{\circ} \mathrm{C}\right)\right)=3.27 \mathrm{~cm}
$$

2. A square hole measuring 8 cm along each side is cut in a sheet of copper. What is the change in area of the hole if the temperature of the sheet is increased by 50 K ? Is this an increase or decrease in area of the hole?
$\Delta A=2 \alpha A_{\text {old }} \Delta T=2 \times 17 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1} \times 0.0064 \mathrm{~m}^{2} \times\left(50^{\circ} \mathrm{C}\right)=1.09 \times 10^{-5} \mathrm{~m}^{2}=0.109 \mathrm{~cm}^{2}$ and this is an increase in area since all dimensions expand.
3. A circular steel ring has a gap cut into it. If the ring is heated does the gap increase or decrease? If the gap has a width of 1.600 cm when the temperature is $30^{\circ} \mathrm{C}$, what is the width of the gap when the temperature is $190^{\circ} \mathrm{C}$?

The gap is approximately a linear dimension so it will increase when heated and $\Delta L=L_{\text {old }} \alpha \Delta T=1.600 \mathrm{~cm} \times 1.1 \times 10^{-5}\left({ }^{\circ} \mathrm{C}\right)^{-1} \times\left(160^{\circ} \mathrm{C}\right)=2.82 \times 10^{-3} \mathrm{~cm}$. Thus the new length will be $1.600 \mathrm{~cm}+0.0028 \mathrm{~cm}=1.603 \mathrm{~cm}$.
4. A mercury thermometer is constructed as shown below. The capillary tube has a diameter of 0.0040 cm and the bulb has a diameter of 0.250 cm . Neglecting the expansion of the glass, what is the change in height of the mercury column that occurs with a temperature change of $30^{\circ} \mathrm{C}$?

$$
\Delta V=A \Delta h=\beta V_{\text {old }} \Delta T \rightarrow \Delta h=\frac{\beta V_{\text {old }} \Delta T}{A}=\frac{\frac{4}{3} \pi(0.125 \mathrm{~cm})^{3} \times 1.82 \times 10^{-4}\left({ }^{\circ} \mathrm{C}\right)^{-1} \times\left(30^{\circ} \mathrm{C}\right)}{\pi(0.002 \mathrm{~cm})^{2}}=3.55 \mathrm{~cm}
$$

5. A thermal window with an area of $3.0 \mathrm{~m}^{2}$ and a thickness of 0.600 cm . If the temperature difference between the surfaces is $25^{\circ} \mathrm{C}$, what is the rate of thermal energy transfer by conduction through the window?
$P_{\text {con }}=\kappa \frac{A}{L} \Delta T=0.8 \frac{\mathrm{~W}}{m^{20} \mathrm{C}} \times \frac{3 \mathrm{~m}^{2}}{6 \times 10^{-3} \mathrm{~m}} \times 25^{\circ} \mathrm{C}=10,000 \mathrm{~W}=10 \mathrm{~kW}$
6. Calculate the "R"-values for windows made of flat glass $1 / 8$ " thick and a thermal window made of two single panes each $1 / 8$ " thick separated by a $1 / 4$ " airspace.
Single Pane: $R_{\text {single }}=\frac{L_{\text {glass }}}{\kappa_{\text {glass }}}=\frac{\frac{1}{8} " \times \frac{0.0254 \mathrm{~m}}{1 \mathrm{in}}}{0.8 \frac{\mathrm{~W}}{\mathrm{~m}^{\circ} \mathrm{C}}}=0.0040 \mathrm{~m}^{\circ} \mathrm{C}$
Double Pane: $R_{\text {thermal }}=\frac{2 L_{\text {glass }}}{\kappa_{\text {glass }}}+\frac{L_{\text {air }}}{\kappa_{\text {air }}}=2 \times 0.0040 \mathrm{~m}^{\circ} \mathrm{C}+\frac{\frac{1}{4} \text { " } \times \frac{0.0254 \mathrm{~m}}{1 \mathrm{in}}}{0.0234 \frac{\mathrm{~W}}{\mathrm{~m}^{\circ} \mathrm{C}}}=0.279 \mathrm{~m}^{\circ} \mathrm{C}$
7. The tungsten filament of a certain 100.0 W light bulb radiates 2.0 W of light. (The other 98.0 W is carried away by conduction and convection.) The filament has a surface area of $0.250 \mathrm{~mm}^{2}$ and an emissivity of 0.95 . What is the temperature of the filament? (The melting point of tungsten is 3683K.)

$$
P_{\text {Rad }}=\sigma \varepsilon A T^{4} \rightarrow 2.0 \mathrm{~W}=5.67 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}^{4}} \times 0.950 \times 0.25 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~T}^{4} \rightarrow T=3490 \mathrm{~K}
$$

8. The average thermal conductivity of the walls (including windows and doors) and the roof of a typical house is $0.480 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$ and the average thickness is 21.0 cm . The house is heated with natural gas having a heat of combustion (the energy produced per cubic meter of gas burned) of $9300 \mathrm{kcal} / \mathrm{m}^{3}$, where $1 \mathrm{cal}=4.186 \mathrm{~J}$. How many cubic meters of gas must be burned each day to maintain an inside temperature of $25^{\circ} \mathrm{C}$ if the outside temperature is $0^{\circ} \mathrm{C}$? (Neglect heat loss through the ground and the fact that the house absorbs and emits radiation.)

The total cross sectional area is given as

$$
\begin{aligned}
A_{\text {Total }} & =A_{\text {end walls }}+A_{\text {endsof attic }}+A_{\text {side walls }}+A_{\text {roof }} \\
& =2(8 m \times 5 m)+2\left(2 \times \frac{1}{2} \times 4 m \times 4 m \tan 37\right)+2(10 m \times 5 m)+2\left(10 m \times \frac{4 m}{\cos 37}\right) . \\
& =304 m^{2}
\end{aligned}
$$

Thus the heat loss due to conduction is

$$
P_{\text {con }}=\kappa \frac{A}{L} \Delta T=4.8 \times 10^{-4} \frac{\mathrm{~kW}}{\mathrm{~m}^{20} \mathrm{C}} \times \frac{304 \mathrm{~m}^{2}}{0.21 \mathrm{~m}} \times 25^{\circ} \mathrm{C}=17,400 \mathrm{~W}=17.4 \mathrm{~kW}=4.15 \frac{\mathrm{kcal}}{\mathrm{~s}} .
$$

The heat loss per day (~ 86400 s per day) is $3.59 \times 10^{5} \mathrm{kcal} /$ day. Therefore the gas needed to replace this loss is found by dividing $3.59 \times 10^{5} \mathrm{kcal} /$ day by 9300 $\mathrm{kcal} / \mathrm{m}^{3}$, which is $38.6 \mathrm{~m}^{3} /$ day.

