The limits of m and n.

- 1. From class, we saw the limits of *m* have to be in integer from $e^{im\phi} = e^{im(\phi+2\pi)} \rightarrow 1 = e^{2im\pi} \rightarrow 1 = \cos(2m\pi) + i\sin(2m\pi)$ which can only be true if $m = 0, \pm 1, \pm 2, ...$
- 2. From class we have the index *n* defined by n = l+1+ j, where j is from the power series solution to the reduced radial equation. The values of the index *n* can be n = 1,2,3,4,... Setting this equal to l+1+ j, we have n = l+1+ j → n-1=l+j. This was where my mistake was in class, j cannot just be a *single value* j = 0,1,2,3,..., but rather there are allowed values of l and j. Here are some of the allowed values of l and j for a given n.

n	n-1	l	j
1	0	0	0
2	1	0	1
		1	0
3	2	0	2
		1	1
		2	0

If we continue this pattern, we see that for any *n*, the index *l* can assume values l = 0, 1, 2, 3, ..., (n-1). This is the limits *l* of for a given *n*.

In addition, we can construct the values of $L_Z = m\hbar$ and $L = \sqrt{l(l+1)}\hbar$ for any given *l* and *m*. We have:

l	т	L_z	L
0	0	0	0
1	-1 0 1	ーカ 0 カ	$\sqrt{2}\hbar$
2	-2 -1 0 1 2	-2ħ -ħ 0 ħ 2ħ	$\sqrt{6}\hbar$

The vector diagrams that we drew at the end of class illustrating $L = \sqrt{l(l+1)\hbar}$ and $L_z = m\hbar$ are attached.

