The limits of m and n.

1. From class, we saw the limits of m have to be in integer from

$$
e^{i m \phi}=e^{i m(\phi+2 \pi)} \rightarrow 1=e^{2 i m \pi} \rightarrow 1=\cos (2 m \pi)+i \sin (2 m \pi) \text { which can only be true if } m=0, \pm 1, \pm 2, \ldots
$$

2. From class we have the index n defined by $n=l+1+j$, where j is from the power series solution the reduced radial equation. The values of the index n can be $n=1,2,3,4, \ldots$ Setting this equal to $l+1+j$, we have $n=l+1+j \rightarrow n-1=l+j$. This was where my mistake was in class, j cannot just be a single value $j=0,1,2,3, \ldots$, but rather there are allowed values of l and j. Here are some of the allowed values of l and j for a given n.

n	$n-1$	l	j
1	0	0	0
2	1	0	1
		1	0
		0	2
3	2	1	1
		2	0

If we continue this pattern, we see that for any n, the index l can assume values $l=0,1,2,3, \ldots,(n-1)$. This is the limits l of for a given n.

In addition, we can construct the values of $L_{Z}=m \hbar$ and $L=\sqrt{l(l+1)} \hbar$ for any given l and m. We have:

l	m	L_{z}	L
0	0	0	0
	-1	$-\hbar$	
1	0	0	$\sqrt{2} \hbar$
	1	\hbar	
	-2	$-2 \hbar$	
	-1	$-\hbar$	
2	0	0	$\sqrt{6} \hbar$
	1	\hbar	
	2	$2 \hbar$	

The vector diagrams that we drew at the end of class illustrating $L=\sqrt{l(l+1)} \hbar$ and $L_{Z}=m \hbar$ are attached.

$$
\begin{aligned}
& l=0 \\
& m=0
\end{aligned}
$$

$$
\begin{aligned}
& l=1 \\
& m=-1,0,1
\end{aligned}
$$

$$
L_{z}=0
$$

$$
\begin{aligned}
& L_{2}=\left\{\begin{array}{c}
-\frac{\hbar}{\hbar} \\
0 \\
\hbar
\end{array}\right. \\
& L=\sqrt{2} \frac{1}{\hbar}
\end{aligned}
$$

3alloved states of angular momentum.
The Components $L_{x} \vdots L_{y}$ are unknown and are smeared arand a

$$
L=0
$$ Cone of angle θ.

$$
\begin{aligned}
& l=2 \\
& m=-2,-1,0,1,2
\end{aligned}
$$

In the Limit of large n, l is large and there are mone allowed states of angular momentum.

1) $L=\sqrt{l(l+1)} \hbar \sim \sqrt{(n-1)(n)} \hbar$
2) $\cos \theta=\frac{L_{z}}{L}=1$ in the Limit that θ is small (cos $n \rightarrow \infty$).
$L \sim L_{z}$ and $L_{\text {becomes fixed in }}$
space. That means the mag. idir are fixed and this is the Classical Limit.

Since L points in agron direction w) known magnitude
\rightarrow no uncertainty. all Components are Knani.

