
Physics 111 
Fall 2007 
Magnetism Solutions 
 
1. How fast must an electron travel in an extremely large magnetic field (30 T) so that 

the force on it will be as large as the force on a single myosin muscle protein from the 
chemical energy of one ATP molecule, 3 pN or 3 x 10-12 N?   This should indicate to 
you that even large constant magnetic fields can exert only negligible forces on the 
atoms in our body.  In fact, people are routinely exposed to such large DC magnetic 
fields in Magnetic Resonance Imaging without any ill effects. 

 
The speed is given from the magnetic force equation 

s
m

TC
N

qB
FvqvBF 5

19

12

1025.6
30106.1

100.3
×=

××
×

==→= −

−

 

 
 
2.  A mass spectrometer can detect the different isotopes of an ionized element.  If Zn2+ 

ions are accelerated through a 10 kV potential and enter a 10 T magnetic field region, 
calculate the different radii that the isotopes 64Zn and 66Zn, where the numbers refer 
to the atomic weight in atomic mass units.  

 
Here we’ll assume that 1 atomic mass unit is approximately the mass of 1 proton.  Therefore 
the mass of 64Zn is and the mass of kgkg 2527 100688.11067.164 −− ×=×× 66Zn 

is . kgkg 2527 101022.11067.166 −− ×=××
 
To calculate the radii of each isotope we equate the magnetic force to the centripetal force 
experienced by each isotope.  This give for the radius of a particle of mass 
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having used the work-kinetic energy theorem to 

replace the speed of the particle in terms of its mass and the potential difference it has been 
accelerated through. 
 
Therefore the radii of 64Zn and 66Zn are 
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and 
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respectively. 
 
 

 



3.   A current balance is a device that has two parallel rigid wires carrying the same 
current in opposite directions.  One of the wires is fixed while the other one is 
attached in such a way that it can pivot in response to a force from the second wire 
(see figure).  First the pivot is adjusted to the top wire is in equilibrium with no 
current flowing, and then the current is turned on.  By adding external weight to the 
top wire it can be kept at its equilibrium separation distance and the magnetic force 
between the wires can be determined.  This device can be used to calibrate current by 
direct force measurement.   
a. Write down the B field produced by the bottom fixed wire (assuming it to be 

infinite) and determine that it will produce an upward force on the top current 
carrying wire. 

b. Compute the force on the 40 cm long top wire if both currents are equal to 10 A 
and the separation distance is 0.5 cm, and thereby determine the mass needed to 
be added to the top rod to keep it at the 1 cm distance.  Note that these forces are 
not large.   
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a. The magnetic force on a long current-carrying wire is given 

as
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.  By the right-hand rule, the magnetic field at the upper wire 

produced by the current in the lower wire is pointing out of the page (along the plane of 
the wires toward the viewer.)  This produces a force, by the right-hand rule on the upper 
wire that is directed upward as indicated in the diagram. 

 
b. The magnetic force felt by the upper wire is 

therefore
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and 

the mass needed to balance this upward force is given by Newton’s 2nd 
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4.   A proton follows a spiral path through a gas in a magnetic field 

of 0.010 T, perpendicular to the plane of the spiral, as shown 
below. In two successive loops, at points P and Q, the radii are 
10.0 mm and 8.5 mm, respectively. Calculate the change in the 
kinetic energy of the proton as it travels from P to Q.  

 
The speed of the proton can be calculated based on the radius of curvature of the (almost) circular 

motion. From that the kinetic energy can be calculated. 
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5.   An electron enters a uniform magnetic field T23.0=B  at a 45° angle to B  

Determine the radius r and pitch p (distance between loops as shown below) of the 
electron’s helical path assuming its speed is 

.
r

3.0 ×106 m s .   

 
 
 The centripetal force is caused by the magnetic field, and is given by Eq. 20-3. 
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The component of the velocity that is parallel to the magnetic field is unchanged, and so the pitch is 

that velocity component times the period of the circular motion. 
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6.   A cyclotron consists of large magnets (called dees since they are in the shape of the 
letter D) with a small gap between them as shown in the figure.  An accelerating 
voltage is applied across the gap and charged particles, such as protons, are 
accelerated across the gap and then enter a region where a uniform magnetic field 
steers them in a semi-circle to return to the gap.  The accelerating voltage polarity is 
reversed and so the particle accelerates further returning across the gap and entering 
the opposite region of magnet field, where it is steered around in a semi-circle again.  
This process is repeated many times to accelerate the particle to high speeds in a 
relatively small region of space. 
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a) First show that if the particle of mass m and charge q has a speed v and the 
uniform magnetic field is B, then it will travel in a semi-circle of radius 

vmr
qB
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b) Then show that the particle will travel in the semi-circle in a time mt
eB
π

=  that 

is independent of the radius of the orbit.  This allows the cyclotron to have a 
constant frequency of oscillation of the accelerating voltage given by f = 1/(2t) 
so long as the particle energy is below about 50 MeV.  Beyond this relativity 
effects occur and the time does vary with particle velocity or radius of orbit. 

 
  

a. To calculate the radii of a particle of mass m and charge q, we equate the magnetic 
force to the centripetal force experienced by the mass.  This give for the radius of a 
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qB
mvr

r
mvqvBFF CB =→=→=

2

. 

 
b. We want the particle to travel a semi-circle of distance πr and calculate the amount of 

time that this takes.  To do this we need to know that velocity of the particle.  Again 
we equate the centripetal force experienced by the particle to the magnetic force and 
this time solve for the velocity.  Doing this we 

find
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distance traveled by the time it takes to travel this distance.  Thus the time 
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7.   A cyclotron is sometimes used for carbon dating as will be described in Chapter 30. 

Carbon-14 and carbon-12 ions are obtained from a sample of the material to be dated 
and are accelerated in the cyclotron. If the cyclotron has a magnetic field of 
magnitude 2.40 T, what is the difference in cyclotron frequencies for the two ions?  
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8.   A sort of “projectile launcher” is shown below. A large current moves in a closed 

loop composed of fixed rails, a power supply, and a very light, almost frictionless bar 
touching the rails. A magnetic field is perpendicular to the plane of the circuit. If the 
bar has a length  a mass of 1.5 g, and is placed in a field of 1.7 T, what 
constant current flow is needed to accelerate the bar from rest to 

cm,22=L
sm28  in a distance 

of 1.0 m? In what direction must the magnetic field point?  
 
   
 
 
 
 
 

The accelerating force on the bar is due to the magnetic force on the current. If the current is constant, 

the magnetic force will be constant, and so constant acceleration kinematics can be used. 
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Using the right hand rule, for the force on the bar to be in the direction of the acceleration shown in 

the figure, the magnetic field must be down. 



9.   Rail guns have been suggested for launching projectiles into space without chemical 
rockets and for ground-to-air antimissile weapons of war. A tabletop model rail gun 
consists of two long, parallel, horizontal rails 3.50 cm apart, bridged by a bar BD of 
mass 3.00 g. The bar is originally at rest at the midpoint of the rails and is free to slide 
without friction. When the switch is closed, electric current is quickly established in 
the circuit ABCDEA. The rails and bar have low electric resistance, and the current is 
limited to a constant 24.0 A by the power supply.  

(a)  Find the magnitude of the magnetic field 1.75 cm from a single very long, 
straight wire carrying current 24.0 A.  

(b)  Find the magnitude and direction of the magnetic field at point C in the 
diagram, the midpoint of the bar, immediately after the switch is closed.  

(c)  At other points along the bar BD, the field is in the same direction as at point 
C but is larger in magnitude. Assume that the average effective magnetic field 
along BD is five times larger than the field at C. With this assumption, find 
the magnitude and direction of the force on the bar.  

(d) Find the acceleration of the bar when it is in motion.  
(e) Does the bar move with constant acceleration?  
(f) Find the velocity of the bar after it has traveled 130 cm to the end of the rails.   

 
 

 (a) 
  
B =

µ0I
2π r

=
4π × 10−7  T ⋅m A( ) 24.0 A( )

2π 0.017 5 m( )
= 2.74 × 10−4  T  

 

(b) At point C, conductor AB produces a field 1
2

2.74 × 10−4  T( ) − ĵ( ),  conductor 

DE produces a field of 1
2

2.74 × 10−4  T( ) − ĵ( ),  BD produces no field, and AE 

produces negligible field. The total field at C is 2.74 × 10−4  T − ĵ( ) . 

 
(c)
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(d) 
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1.15 × 10−3  N( )̂i
3.0 × 10−3  kg

= 0.384 m s2( )̂i  

 
(e) The bar is already so far from AE that it moves through nearly constant 

magnetic field. The force acting on the bar is constant, and therefore the 
bar’s

 
acceleration is constant . 

 



(f) 
  
v f

2 = vi
2 + 2ax = 0 + 2 0.384 m s2( ) 1.30 m( ) , so rv f = 0.999 m s( )î  

 
 
10.  Two circular loops are parallel, coaxial, and almost in contact, 1.00 mm apart as 

shown in the figure below. Each loop is 10.0 cm in radius. The top loop carries a 
clockwise current of 140 A. The bottom loop carries a counterclockwise current of 
140 A.  

(a) Calculate the magnetic force exerted by the bottom loop on the top loop. 
(b) The upper loop has a mass of 0.021 0 kg. Calculate its acceleration, 

assuming that the only forces acting on it are the force in part (a) and the 
gravitational force. (Suggestion: Think about how one loop looks to a bug 
perched on the other loop.)  

 

 
 
 Model the two wires as straight parallel wires (!) 
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(b) 
  
aloop =

2.46 N − mloop g
mloop

= 107 m s2 upward 

 
 
 
 
 
 
 



11. A heart surgeon monitors the flow rate of blood through an artery using an 
electromagnetic flowmeter, shown right. 
Electrodes A and B make contact with the 
outer surface of the blood vessel, which has 
interior diameter 3.00 mm.  

(a) For a magnetic field magnitude of 
0.040 0 T, an emf of 160 µV appears 
between the electrodes. Calculate the 
speed of the blood.  

(b) Verify that electrode A is positive as 
shown. Does the sign of the emf depend on whether the mobile ions in the 
blood are predominantly positively or negatively charged? Explain.   

 
 (a) The magnetic force acting on ions in the blood 

stream will deflect positive charges toward 
point A and negative charges toward point B. 
This separation of charges produces an 
electric field directed from A toward B. At 
equilibrium, the electric force caused by this 
field must balance the magnetic force, so 
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   or 
  
v =

∆V
Bd

=
160 × 10−6  V( )

0.040 0 T( ) 3.00 × 10−3  m( )= 1.33 m s . 

(b) 
 

No . Negative ions moving in the direction of v would be deflected toward 
point B, giving A a higher potential than B. Positive ions moving in the 
direction of v would be deflected toward A, again giving A a higher potential 
than B. Therefore, the sign of the potential difference does not depend on 
whether the ions in the blood are positively or negatively charged. 

 
 
 
12. Heart–lung machines and artificial kidney machines 

employ blood pumps. A mechanical pump can 
mangle blood cells. The figure on the right 
represents an electromagnetic pump. The blood is 
confined to an electrically insulating tube, 
cylindrical in practice but represented as a rectangle 
of width w and height h. The simplicity of design 
makes the pump dependable. The blood is easily 
kept uncontaminated; the tube is simple to clean or cheap to replace. Two electrodes 
fit into the top and bottom of the tube. The potential difference between them 
establishes an electric current through the blood, with current density J over a section 
of length L. A perpendicular magnetic field exists in the same region.  



(a) Explain why this arrangement produces on the liquid a force that is directed 
along the length of the pipe. 

(b) Show that the section of liquid in the magnetic field experiences a pressure 
increase JLB. 

(c) After the blood leaves the pump, is it charged? Is it current-carrying? Is it 
magnetized? The same magnetic pump can be used for any fluid that conducts 
electricity, such as liquid sodium in a nuclear reactor.  
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(a) Define vector   
r
h  to have the downward direction of the current, and vector 

r
L  

to be along the pipe into the page as shown. 
The

 
electric current experiences a magnetic force . 
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(b) The sodium, consisting of ions and electrons, 

flows along the pipe transporting no net charge. 
But inside the section of length L, electrons drift 
upward to constitute downward electric current J × area( )= J Lw . 

 The current then feels a magnetic force I
r
h ×

r
B = JLwhBsin 90°  This force along 

the pipe axis will make the fluid move, exerting pressure 
 

 
   

F
area

=
JLwhB

hw
= JLB . 

 
(c) Charge moves within the fluid inside the length L, but charge does not 

accumulate: the fluid is not charged after it leaves the pump. It is not current-
carrying and it is not magnetized. 

 
 


