Physics 100 – Module 1

Materials Science and Materials Analysis using a Particle Accelerator

Instructor: Scott M. LaBrake, Ph.D.

Office: N331, N008B Office Hours: MW: 9:00^{am} – 10:30^{am}; 1:30^{pm} – 3:00^{pm} T: 9:00^{am} – 11:00^{am}; 1:00^{pm} – 3:00^{pm} Th: 9:00^{am} – 11:00^{am} & by Appointment

Phone: x6053, x6562

Email: labrakes@union.edu

Website: <u>http://minerva.union.edu/labrakes</u>

My Background:

In the department for 16 years

8th time teaching Physics 100.

Teach primarily

Physics 110/111 (Physics for the Life Sciences)
Physics 120/121 (Physics for Majors and Engineers)
Physics 210 (Medical Physics)
Physics 220 (Introduction to Quantum Mechanics)
Physics 300 (Modern Experimental Techniques)
Physics 490/491 (Senior Thesis)

Background continued...

• I am trained as a theoretical physicist in waveguide theory.

Production, propagation, and diffraction of x-rays (a type of electromagnetic wave) through glass capillary fibers.

Includes surface roughness and x-ray attenuation effects.

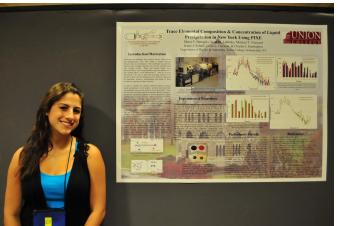
 I am also an experimental physicist who runs the particle accelerator. Environmental pollution studies with aerosols/liquids Environmental pollution near airports – Pb pollution from small aircraft Medical and Health Physics issues – Hg in Fish/metal distribution in tissues Soil contamination – Heavy Metals in soils and sediments Art/Archeometry – dating artifacts by diffusion processes into a sample

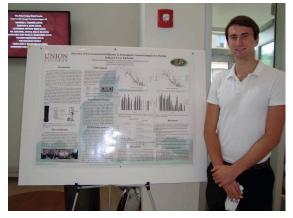
My physics hobbies...

Fluid Mechanics Aerodynamics Flight and Flight Mechanics Aircraft Photography

Motion and Gravity

The Union College Ion Beam Analysis Laboratory




Chad & Colin are now graduate students (at SUNY Buffalo and University of South Carolina), who worked on the analysis of atmospheric aerosols by PIXE/PIGE/RBS/PESA.

Colin is a 4nd year graduate student at Penn State who worked on the analysis of atmospheric aerosols by RBS/PESA.

Maria is a Resident Pediatrician on Long Island who worked on liquid precipitation samples and on the development of a procedure for looking at the distribution of metals in animal (skate) tissues. Here she is at CAARI, an international accelerator conference in Fort Worth Texas

Ben is a Senior who is looking at ERDA

Jeremy is 2nd year graduate student at Uconn (and former PHY100 student) who worked on his senior thesis on the accelerator studying lead emissions from small airplanes at Schenectady airport.

Some past and present research students

What does the UCIBAL study?

Applications of Nuclear Physics to Environmental Problems

Solids – soils, trees, tissues Liquids – water, wines, blood Gas – atmospheric aerosols

http://www.conserve-energy-future.com/wp-content/uploads/2013/04/Smoke_from_airplane.jpg

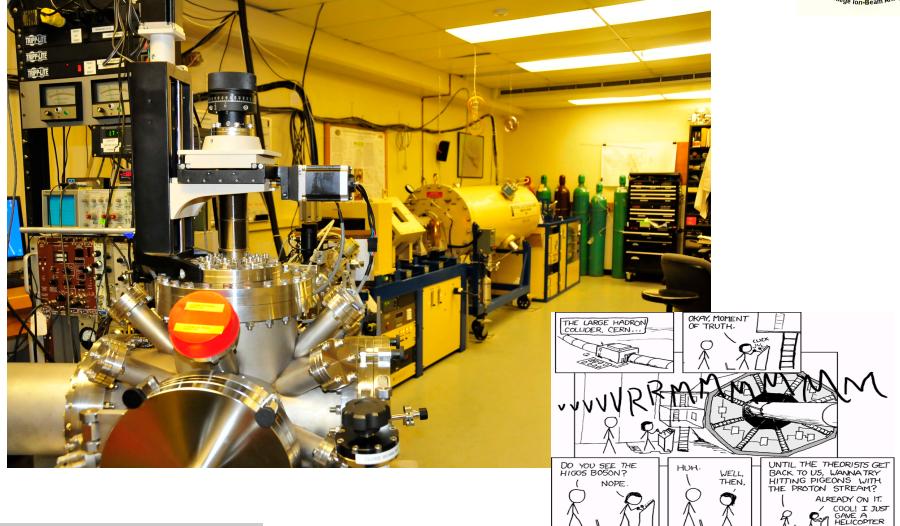
http://www.offthehoof.co.uk/2013/03/how-to-avoid-environmental-pollution/

http://ocean.nationalgeographic.com/ocean/critical-issues-marine-pollution/

Physics 100 – Pelletron – F16

Game Plan....

•We're going to use a what?


- •Accelerator What it is, What it does. Energy and velocity calculations.
- •*PIXE* Basics, Theory and Sample calculations.
- •Modifications to the *PIXE* Theory.

•Materials Analysis of a sample using *PIXE* and the accelerator.

We're going to use a what? A particle accelerator?

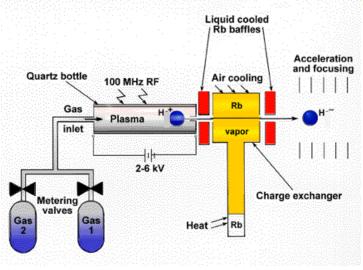
http://sciencegeekgirl.com/files/2008/12/large_hadron_collider1.png?w=300

Physics 100 – Pelletron – F16

CANCER.

The Pelletron Particle Accelerator

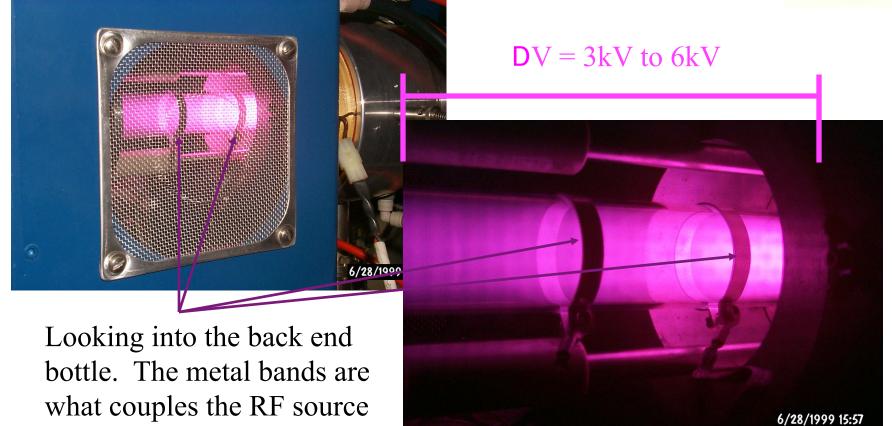

- •Built by the National Electrostatics Corporation
- •Acquired in 1991
- •Replaced 450 kV Van-de-Graff accelerator
- In the process of writing a grant proposal for ~1.5 million dollars for a new accelerator which if funded would be installed in 2018.
- •Our current accelerator has 4 main components
 - Ion production
 - Two-Stage (tandem) acceleration of ions
 - Steering of ions
 - Scattering chamber


The Pelletron Particle Accelerator

The Source: Ion Production

- H or He gas is bled into the gas inlet.
- 100MHz Radio Frequency (RF) electromagnetic energy is dumped into the quartz bottle which produces H⁺, He⁺, He⁺⁺ and other ions.
- A potential difference of about 3.6kV for H or He is applied across the bottle.
- This accelerates the ions out into the charge exchanger.

http://www.pelletron.com


- The H⁺ or He⁺ charges pass through a low density Rubidium (Rb) vapor and through charge-exchange collisions pick up extra negative charges.
- The H⁻ or He⁻ charges continue on into the accelerator.
- Of course there are other ions that are also accelerated (N⁻, O⁻, ...)

Ion Production and Plasma Source

Characteristic glow of a hydrogen plasma.

to the bottle.

Physics 100 – Pelletron – F16

The Low Energy End of the Accelerator

Ion Source or Low-Energy end of the accelerator showing the Rubidium furnace and cooling system.

The UCIBAI

ege Ion-Beam Analys

The H⁺ plasma is the faint pink glow.

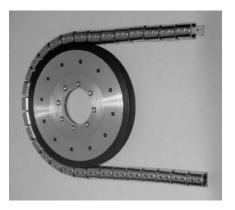
Wide view of ion source. This also has a *Faraday cup* in view. The faraday cup is designed to count the number of charges and determine the beam current.

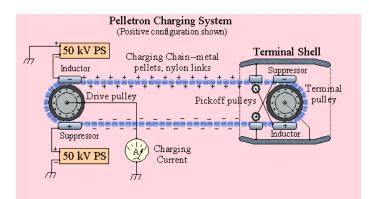
The Accelerator

• The resultant positive particle is accelerated away from the terminal back down 1.1MV towards the left edge and thus produces a tandem acceleration of the ion species.

- The chain is housed inside of this tank.
- The terminal is in the center.
- From right edge of the photo (the low-energy end) to the terminal a *1.1MV* is applied.

• From the terminal to the highenergy end there is another *1.1MV* difference in potential.


• Nitrogen gas is bled from the left end of the photo to the terminal to pull off the added negative charges through anther charge-exchange collision.


Tandem acceleration of ions

- The negative ions are accelerated toward the center of the pressure tank by a 1.1 MV difference in potential between the low-energy end and the terminal.
- The center of the pressure tank (the terminal) is made positive with respect to the charge exchanger.
- The potential difference is developed by the Pelletron Charging system, which consists of metal pellets and insulating connectors.
- •The terminal is charged by induction and is a very stable and reliable system.

Pelletron Chains http://www.pelletron.com/charging.htm

Pelletron Charging System by NEC

