Physics 100 – Module 1

Materials Science and Materials Analysis using a Particle Accelerator

Instructor: Scott M. LaBrake, Ph.D.

Office: N331, N008B

Office Hours: MWF: $10:30^{am} - 12:00^{pm}$, T/Th: $9:00^{am} - 11:00^{am}$ & by Appointment

Phone: x6053, x6562

Email: labrakes@union.edu

Website: <u>http://minerva.union.edu/labrakes</u>

My Background:

In the department for 13 years

7th time teaching Physics 100.

Teach primarily

Physics 110/111 (Physics for the Life Sciences)Physics 120 (Physics for Majors and Engineers)Physics 210 (Medical Physics)Physics 220 (Introduction to Quantum Mechanics)

Physics 300 (Modern Experimental Techniques)

Background continued...

•I am a theoretical physicist who was trained in waveguide theory

Production, propagation, and diffraction of x-rays (a type of electromagnetic wave) through glass capillary fibers.

Includes surface roughness and x-ray attenuation effects.

- •I am also an experimental physicist who runs the particle accelerator. Environmental pollution studies with aerosols/liquids Environmental pollution near airports – Pb pollution Medical and Health Physics issues – Hg in Fish/metal distribution in tissues
 - Soil contamination Mud Samples
 - Art and Archeometry
 - At some point Forensics/paleontology/medical applications

My physics hobbies...

Fluid Mechanics Aerodynamics Flight and Flight Mechanics Aircraft Photography

Motion and Gravity

The Union College Ion Beam Analysis Laboratory

Chad & Colin are now graduate students (at SUNY Buffalo and University of South Carolina), who worked on the analysis of atmospheric aerosols by PIXE/PIGE/RBS/PESA.

Maria is a 3nd year medical student who worked on liquid precipitation samples and on the development of a procedure for looking at the distribution of metals in animal (skate) tissues. Here she is at CAARI, an international accelerator conference in Fort Worth Texas

Colin is a 2nd year graduate student at Penn State who worked on the analysis of atmospheric aerosols by RBS/PESA.

Ben is a junior who is looking at lead pollution near airports.

Jeremy is a first year graduate student at Uconn (and former PHY100 student) who worked on his senior thesis on the accelerator studying lead emissions from small airplanes at Schenectady airport.

Some past and present research students

What does the UCIBAL study?

Environmental Pollution

Solids – soils, trees, tissues Liquids – water, wines, blood Gas – atmospheric aerosols

http://www.conserve-energy-future.com/wp-content/uploads/2013/04/Smoke_from_airplane.jpg

http://www.offthehoof.co.uk/2013/03/how-to-avoid-environmental-pollution/

http://ocean.nationalgeographic.com/ocean/critical-issues-marine-pollution/

Game Plan....

- •We're going to use a what?
- •Accelerator What it is, What it does. Energy and velocity calculations.
- •*PIXE* Basics, Theory and Sample calculations.
- •Modifications to the *PIXE* Theory.

•Materials Analysis of a sample using *PIXE* and the accelerator.

We're going to use a what? A particle accelerator?

http://sciencegeekgirl.com/files/2008/12/large_hadron_collider1.png?w=300

The Pelletron Particle Accelerator

- •Built by the National Electrostatics Corporation
- •Acquired in 1991
- •Replaced 450 kV Van-de-Graff accelerator
- In the process of writing a grant proposal for ~1.2 million dollars for a new accelerator which if funded would be installed in 2016.
- •Our current accelerator has 4 main components

Ion production

Two-Stage (tandem) acceleration of ions

Steering of ions

Scattering chamber

The Pelletron Particle Accelerator

The Source: Ion Production

- H or He gas is bled into the gas inlet.
- 100MHz Radio Frequency (RF) electromagnetic energy is dumped into the quartz bottle which produces H⁺, He⁺, He⁺⁺ and other ions.
- A potential difference of about 3.6kV for H or He is applied across the bottle.
- This accelerates the ions out into the charge exchanger.

http://www.pelletron.com

- The H⁺ or He⁺ charges pass through a low density Rubidium (Rb) vapor and through charge-exchange collisions pick up extra negative charges.
- The H⁻ or He⁻ charges continue on into the accelerator.
- Of course there are other ions that are also accelerated (N⁻, O⁻, ...)

Ion Production and Plasma Source

Characteristic glow of a hydrogen plasma.

The Low Energy End of the Accelerator

Ion Source or Low-Energy end of the accelerator showing the Rubidium furnace and cooling system.

The UCIBAI

e Ion-Beam Analys

The H⁺ plasma is the faint pink glow.

Wide view of ion source. This also has a *Faraday cup* in view. The faraday cup is designed to count the number of charges and determine the beam current.

The Accelerator

• The resultant positive particle is accelerated away from the terminal back down 1.1MV towards the left edge and thus produces a tandem acceleration of the ion species.

- The chain is housed inside of this tank.
- The terminal is in the center.
- From right edge of the photo (the low-energy end) to the terminal a *1.1MV* is applied.
- From the terminal to the highenergy end there is another *1.1MV* difference in potential.
- Nitrogen gas is bled from the left end of the photo to the terminal to pull off the added negative charges through anther charge-exchange collision.

Tandem acceleration of ions

- The negative ions are accelerated toward the center of the pressure tank by a 1.1 MV difference in potential between the low-energy end and the terminal.
- The center of the pressure tank (the terminal) is made positive with respect to the charge exchanger.
- The potential difference is developed by the Pelletron Charging system, which consists of metal pellets and insulating connectors.
- •The terminal is charged by induction and is a very stable and reliable system.

Pelletron Chains

Pelletron Charging System by NEC

http://www.pelletron.com/charging.htm

The Accelerator – What's inside the tank...

The Accelerator – What's inside the tank...

High-energy end of accelerator

Accelerating Rings

A Pellet

Inductors

Terminal Shell

Units:

Typically work is expressed in units of kiloelectron volts (keV) or Megaelectron volts (MeV). What are these?

- First let's consider accelerating a charged particle from rest to some speed *v*.
- The work done is a product of the charge and the accelerating potential that the charge passes though.
- It is like a ball rolling down a hill. There is a conversion of *potential energy* at the top of the hill to *kinetic energy* at the bottom of the hill. The ball starts from rest and at the bottom of the hill has a speed v and thus a *kinetic energy* associated with its motion. So too does the charge.
- It is repelled away from a like charge at the top of the potential hill and attracted to an opposite charge at the bottom of the potential hill

Work =
$$W = q\Delta V = (1e^{-}) \times (1\text{Volt}) = 1\text{electron} \times \text{Volt} = 1eV$$

Units:

• Each elementary charge has 1.6x10⁻¹⁹ Coulombs worth of charge. Therefore the work done can also be written as:

Work =
$$W = q\Delta V_{\text{accelerating}} = 1eV = 1e \times \frac{1.6 \times 10^{-19} \text{Coulombs}}{1e} \times 1\text{Volt} = 1.6 \times 10^{-19} \text{Joules}$$

- An electron-volt is a unit of energy
- And our conversion is that $1eV = 1.6x10^{-19} J$.
- By the work-kinetic energy theorem, the work done accelerating the charge changes the kinetic energy from zero (the charge is initially at assumed to be at rest) to some speed v given by

Work =
$$\Delta$$
Kinetic Energy = $\Delta KE = \frac{1}{2}m_{ion}v_{ion}^2$

A Couple of Quick Calculations

How fast is the proton traveling when it leaves the ion source?

$$W_i = q\Delta V = 1e \times 3.6kV = 3.6keV$$

$$W_{i} = \Delta KE$$

$$W_{i} = 3.6keV \times \frac{1.6 \times 10^{-19} J}{1eV} = 5.76 \times 10^{-16} J = KE_{f} - KE_{i} = KE_{f}$$

$$5.76 \times 10^{-16} J = \frac{1}{2} m_{p} v_{p}^{2}$$

$$\therefore v_{p} = \sqrt{\frac{2 \times 5.76 \times 10^{-16} J}{1.67 \times 10^{-27} kg}} = 8.31 \times 10^{5} \frac{m}{s}$$

A Couple of Quick Calculations

What is the kinetic energy of the proton after it leaves the accelerator?

$$\begin{split} W_{total} &= \sum_{j=1}^{N} w_j = -\sum q \Delta V = w_{source} + w_{low-energy} + w_{high-energy} \\ W_{total} &= -\left\{ 1e^+ \times (0kV - 3.6kV) + (-1e^-) \times (1.1MV - 0MV) + 1e^+ \times (0MV - 1.1MV) \right\} \\ W_{total} &= KE_f = 3.6keV + 1.1MeV + 1.1MeV = 2.2036MeV \approx 2.2MeV \\ \therefore KE_f &= 2.2MeV \times \frac{1.6 \times 10^{-19} J}{1eV} = 3.52 \times 10^{-13} J \end{split}$$

What is the speed of the proton after it leaves the accelerator?

$$KE_{f} = \frac{1}{2}m_{p}v_{p}^{2} \rightarrow v_{p} = \sqrt{\frac{2KE_{f}}{m_{p}}} = \sqrt{\frac{2\times3.52\times10^{-13}J}{1.67\times10^{-27}kg}} = 2.05\times10^{7}\,\frac{m_{p}}{s}$$

A Couple of Quick Calculations

Comment:

Generally one needs to worry about the speeds of these particles and how they compare to the speed of light.

- Need to include Relativistic effects?
- In other words does the measured speed of the proton equal the theoretical speed of the proton?

This is hard to do... so, we set a limit... and we define a relativistic limit to be when the velocity of the object is less than *one-tenth* the speed of light ($c \sim 3x10^8 \text{ m/s}$) then we do not have to worry about relativistic effects.

Here the velocity is 2.05×10^7 m/s which is 0.069 times the speed of light, less than the limit, so no relativistic effects.