Materials Analysis with fast ions using the 1.1MV

 tandem electrostatic Pelletron Particle Acceleratorat Union College

Introduction to Ion Beam Analysis \rightarrow Ion-Target Interaction

- Elastic Atomic Collisions
- Very low energies, typically a few keV
-Surface composition and structure
-Ion Scattering spectrometry (ISS)
-Inelastic Atomic Collisions
-Ionization of target atoms
- Characteristic x-ray emission
-Particle Inducted X-Ray Emission (PIXE)
-Detection of elements with $\mathrm{Z}>6$
-Elastic Nuclear Collisions
-Rutherford Backscattering ($R B S$)
- Mainly for $\mathrm{Z}>\mathrm{Z}_{\text {ion }}$ (usually He^{++})
-Elastic Recoil Detection Analysis (ERDA)
- Mainly for $\mathrm{Z}<\mathrm{Z}_{\text {ion }}$ (only H in this case)
-Inelastic Nuclear Collisions
- Nuclear Reactions can occur
- Nuclear Reaction Analysis (NRA)
-Gamma ray production (PIGE)

In our lab we have the ability to do PIXE, PIGE, $R B S$ \& ERDA

Introduction: Ion -Target Interaction

Nuclear Reactions producing n, γ-rays, ions

Proton Induced X-ray Emission Spectroscopy

PIXE

- First observation by Chadwick (the discover of the neutron) (Phil. Mag. 24 (1912) 54)
- X-ray emission induced by charged particles from a radioactive source. We're going to produce protons on our accelerator and shoot them at a target to produce x-rays.
- Moseley in1913: the energy of the x-rays scales with Z^{2}
- First application T.B. Johansson et al, Nucl. Instr. Meth. B 84 (1970) 141
- 2022: most widely used technique in materials analysis, atmospheric aerosols, archaeology, paleontology, archaeometry, criminology, biology, geology, environmental sciences.....

PIXE: The Basics

Ion-, Electron- and X-ray-Induced
X-ray Analysis

- Incident particle knocks electrons out of the occupied states around the atom leaving empty states (vacancies)

- Electron in occupied state makes transition to unfilled vocancy. X -ray is emitted to conserve energy.

- Energy of the X-ray identifies the otom

Jones, C.C., Emeritus Professor of Physics, Union College, Lecture Notes

- Incident proton interacts with electrons in the material ejecting electrons.
- This creates a vacancy in a shell that is usually filled with an electron from a higher orbit.
- For the electron to fill this vacancy it needs to lose energy.
- The energy difference is the difference from where the electron is currently to where it wants to go, and this is typically on the order of several keV and higher.
- When the electron transitions an x-ray photon of that energy difference is emitted and the spectrum of all x-ray photons are plotted and identified.

An Illustration of the PIXE process

L_{α} transition in an atom

The incident proton ejects an electron from the $n=2$ orbital and creates a vacancy in the $n=2$ orbital. An electron from the $n=3$ orbital de-excites to fill the vacancy created in the $n=2$ orbital and emitting an x-ray in the process that we can detect.

PIXE: The Basics

- For an incident proton energy of $1-4$ MeV , elements with atomic numbers up to about $50(\mathrm{Sn})$ are generally determined through their K shell X-rays (typically K_{α} line).
- Heavier elements (greater than $Z=50$) are measured through their L shell X rays because the beam energy is not enough to eject the tightly bound K shell electrons.

PERIODIC TABLE OF ELEMENTS

- The concentration of a particular element is deduced from the intensity of the measured x-ray line together with parameters obtained either theoretically and/or experimentally.

Characteristic X-ray production

-Idea based on the incorrect Bohr model of the atom.

- The energy of the photon emitted depends on the energy of the upper state ($E_{\text {upper }}$) and the energy of the lower state $\left(E_{\text {lower }}\right)$.

$$
\Delta E_{\text {photon }}=E_{\text {upper }}-E_{\text {lower }}
$$

- The n designations correspond to atomic orbitals while the letter designations ($K, L, \quad M \ldots$) correspond to shells in the older spectroscopic notation.
- The actual energies are determined from the Schrodinger equation of quantum mechanics.
-We need to determine a formula for the upper and lower energy states.

Thornton, S., \& Rex, A., Modern Physics for Scientists and Engineers, $3^{\text {rd }}$ Ed., Thomas Brooks Cole 151(2006).

Characteristic X-ray production

- Further, the letters are used to designate the shell to which the electron is transitioning.
- The Greek letters are used to designate the higher energy transitions and give the value of Δn.
- For example, the α-transition is a lower energy (higher probability) transition than the β-transition (lower probability), which is in turn lower than the γ-transition.
- The K shell transitions are the highest energy transitions possible.

Thornton, S., \& Rex, A., Modern Physics for Scientists and Engineers, $3^{\text {rd }}$ Ed., Thomas Brooks Cole 151(2006).

Characteristic X-ray production

- Moseley in 1913 empirically determined the relationship between the atomic number and the frequency of the x-ray emitted (or the energy of the x-ray emitted as is how we will use it). Plots like those on the right are called Moseley Plots.
- This is the most fundamental idea behind PIXE.
- It shows that for each atomic number (element) there are a characteristic set of x-ray wavelengths and energies emitted.
- Moseley found the relationship to be of the form:

$$
Z=a \sqrt{f}+b
$$

where a and b are constants from the fitting of a line to the data.

Thornton, S., \& Rex, A., Modern Physics for Scientists and Engineers, 3rd Ed., Thomas Brooks Cole 152(2006).

A typical PIXE Spectrum

Characteristic X-ray production

- When a vacancy is created in the K shell ($n=1$ orbital), an electron in the L shell ($n=2$ orbital) feels an effective charge of $(Z-1) e^{-}$. This is due to the $Z e^{-}$charge of the nucleus and the e^{-}remaining in the K shell. Thus, the net force on an L shell electron is towards the K shell and a de-excitation occurs.
- The transition energies are given
 by the Einstein relation

$$
\Delta E_{\text {photon }}=E_{x-r a y}=h f \approx-13.57 \mathrm{eV}\left(\frac{1}{n_{\text {lower }}^{2}}-\frac{1}{n_{\text {upper }}^{2}}\right) Z^{2}
$$

- The x-ray energies go as $(Z-1)^{2}$ which produces the parabolic energy curves.
- Notice that if we rearrange the above equation and take a square root, we get the form that Moseley obtained, namely:

$$
Z=a \sqrt{f}+b
$$

Comments: Derivation of the Bohr Theory

- Energies and wavelengths are based on the Bohr Theory of the atom for an electron orbiting around a nucleus of charge $Z e^{-}$.

$$
F_{\text {centripetal }}=F_{\text {electrostatic }} \rightarrow \frac{m_{e} v_{e}^{2}}{r_{e}}=\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{e}^{2}} \rightarrow v_{e}^{2}=\frac{Z e^{2}}{4 \pi \varepsilon_{0} m_{e} r_{e}}
$$

- Using the fact that the angular momentum of the electron $L=m v_{e} r_{e}$, we can write the above as

$$
v_{n}=\frac{Z e^{2}}{4 \pi \varepsilon_{0} L}
$$

- The angular momentum can also be represented as an integer multiple of Planck's constant, or the angular momentum is quantized.

$$
L=n \hbar=n \frac{h}{2 \pi}
$$

- This is a completely non-classical or quantum mechanical result.
- Therefore, the velocities are quantized, meaning they only have certain allowed values.

$$
v_{n}=\frac{Z e^{2}}{4 \pi \varepsilon_{0} n \hbar}
$$

- Now, returning to angular momentum, we can express the orbital radius in terms of this velocity that we just found.

$$
L=n \hbar=m v_{n} r_{n} \rightarrow r_{n}=\frac{n \hbar}{m v_{n}}=\frac{4 \pi \varepsilon_{0} n^{2} \hbar^{2}}{m Z e^{2}}
$$

- The orbital radius is thus also quantized.
- If we have, for example, hydrogen with $Z=1$, the radius of the $1^{\text {st }}$ orbital, known as the Bohr radius, is given as

$$
r_{1}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m e^{2}}
$$

- Substituting the values of the constants gives the value of the Bohr radius

$$
r_{1}=\frac{4 \pi\left(8.85 \times 10^{-12} \frac{C^{2}}{\mathrm{Nm}^{2}}\right)\left(\frac{6.63 \times 10^{-34} \mathrm{JS}}{2 \pi}\right)^{2}}{9.11 \times 10^{-31} \mathrm{~kg} \times\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}=5.31 \times 10^{-11} \mathrm{~m}
$$

- One more thing about orbital radii...

$$
r_{n}=\frac{4 \pi \varepsilon_{0} n^{2} \hbar^{2}}{m Z e^{2}}=n^{2} r_{1}
$$

- The radius of the $\mathrm{n}^{\text {th }}$ orbital can be expressed as an integer multiple of the Bohr radius.
- Now, this is nice and all, but we really want to be able to calculate the energy of individual orbits and then talk about differences in energy levels.
- This will allow us to talk about the x-rays emitted when an electron transitions between an upper orbital and a lower orbital.
- So, how do I calculate the energy of any orbital?
- The energy of an orbit is the sum of the kinetic energy of the electron and a potential energy due to its position with respect to the nucleus.
- The potential energy of a particle of mass m and charge $-e$ a distance r from a heavy nucleus of charge $+Z e$ is given as

$$
V_{n}=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{n}}
$$

- The energy of the orbit is given as

$$
E=\frac{1}{2} m v_{n}^{2}+V_{n}=\frac{1}{2} m\left(\frac{Z e^{2}}{4 \pi \varepsilon_{0} n \hbar}\right)^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} \frac{4 \pi \varepsilon_{0} n^{2} \hbar^{2}}{m Z e^{2}}}
$$

Jones, C.C., Emeritus Professor of Physics, Union College, Lecture Notes

- Doing the math... $E_{n}=-\frac{Z^{2} m e^{4}}{2\left(4 \pi \varepsilon_{0}\right)^{2} n^{2} \hbar^{2}}$
- And here we are, the energy of the $\mathrm{n}^{\text {th }}$ orbital for a hydrogen-like (1 electron) atom.
- Notice that the energy is proportional to Z^{2} and if you plot the energy versus atomic number, you get parabolic energy curves which is what Moseley obtained.

The X-ray Energies

- The energies of an emitted x-ray are given as the difference between where the electron originates and where the electron is going to

$$
\Delta E=E_{\text {upper }}-E_{\text {lower }}
$$

- So, we have:

$$
\begin{aligned}
& \Delta E=E_{\text {upper }}-E_{\text {lower }}=-\frac{Z^{2} m e^{4}}{2\left(4 \pi \varepsilon_{0}\right)^{2} n_{\text {upper }}^{2} \hbar^{2}}-\left(-\frac{Z^{2} m e^{4}}{2\left(4 \pi \varepsilon_{0}\right)^{2} n_{\text {lower }}^{2} \hbar^{2}}\right) \\
& \Delta E=\frac{Z^{2} m e^{4}}{2\left(4 \pi \varepsilon_{0}\right)^{2} \hbar^{2}}\left(\frac{1}{n_{\text {lower }}^{2}}-\frac{1}{n_{\text {upper }}^{2}}\right)=h f=\frac{h c}{\lambda}
\end{aligned}
$$

$$
\rightarrow \Delta E=-13.6 \mathrm{eV}\left(\frac{1}{n_{\text {upper }}^{2}}-\frac{1}{n_{\text {lower }}^{2}}\right) Z^{2}
$$

- Next, we'll examine this formula and see what it tells us.....
- We'll calculate the K_{α} and K_{β} transition energies of a particular element.
- Then we'll discuss how well our results agree with experiments and look at a PIXE spectrum for a single element

