Materials Analysis with fast ions using the 1.1MV tandem electrostatic Pelletron Particle Accelerator at Union College

Introduction to Ion Beam Analysis → Ion – Target Interaction

•Elastic Atomic Collisions

•Very low energies, typically a few keV

•Surface composition and structure

•Ion Scattering spectrometry (ISS)

•Inelastic Atomic Collisions

- Ionization of target atoms
- •Characteristic x-ray emission
- •Particle Inducted X-Ray Emission (PIXE)
- •Detection of elements with Z > 6

•Elastic Nuclear Collisions

Rutherford Backscattering (*RBS*)
Mainly for Z > Z_{ion} (usually He⁺⁺)
Elastic Recoil Detection Analysis (*ERDA*)
Mainly for Z < Z_{ion} (only H in this case)

Inelastic Nuclear Collisions
Nuclear Reactions can occur
Nuclear Reaction Analysis (NRA)
Gamma ray production (*PIGE*)

In our lab we have the ability to do *PIXE*, *PIGE*, *RBS* & ERDA

Introduction: Ion – Target Interaction

Proton Induced X-ray Emission Spectroscopy PIXE

- First observation by Chadwick (the discover of the neutron) (Phil. Mag. 24 (1912) 54)
- X-ray emission induced by charged particles from a radioactive source.We're going to produce protons on our accelerator and shoot them at a target to produce x-rays.
- Moseley in1913: the energy of the x-rays scales with Z^2
- First application T.B. Johansson et al, Nucl. Instr. Meth. B 84 (1970) 141

• 2024: most widely used technique in materials analysis, atmospheric aerosols, archaeology, paleontology, archaeometry, criminology, biology, geology, environmental sciences.....

PIXE: The Basics

Zn, Pb, Ti.

 Incident particle knocks electrons out of the occupied states around the atom leaving empty states (vacancies)

Support

 Electron in occupied state makes transition to unfilled vacancy. X-ray is emitted to conserve energy.

· Energy of the X-ray identifies the atom

Jones, C.C., Emeritus Professor of Physics, Union College, Lecture Notes

- Incident proton interacts with electrons in the material ejecting electrons.
- This creates a vacancy in a shell that is usually filled with an electron from a higher orbit.
- For the electron to fill this vacancy it needs to lose energy.
- The energy difference is the difference from where the electron is currently to where it wants to go, and this is typically on the order of several keV and higher.
- When the electron transitions an x-ray photon of that energy difference is emitted and the spectrum of all x-ray photons are plotted and identified.

An Illustration of the PIXE process

L_{\langle} transition in an atom

The incident proton ejects an electron from the n = 2 orbital and creates a vacancy in the n = 2 orbital. An electron from the n = 3 orbital de-excites to fill the vacancy created in the n = 2 orbital and emitting an x-ray in the process that we can detect.

PIXE: The Basics

- For an incident proton energy of 1 4MeV, elements with atomic numbers up to about 50 (Sn) are generally determined through their *K* shell X-rays (typically K_{ζ} line).
- Heavier elements (greater than Z = 50) are measured through their *L* shell X rays because the beam energy is not enough to eject the tightly bound *K* shell electrons.
- The concentration of a particular element is deduced from the intensity of the measured x-ray line together with parameters obtained either theoretically and/or experimentally.

PERIODIC TABLE OF ELEMENTS															S		
1 H Hydrogen					1 Atomic Number							PubChem					
3 Li	4 Be Berytham			н	H Symb							5 B Baran	6 C Carter	7 N Mitrogan	8 O Daygan	9 F Decres	10 Ne
11 Na	12 Mg	13 14 15 16 17 AI AI Building Participation 13 14 15 16 17 CI Building Participation 15 16 17 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16													18 Ar		
19 K	20 Ca	21 SC	22 Ti Tianture (c)schaf	23 V Variations	24 Cr Chromenan	25 Mn Marganese	26 Fe	27 Co Column	28 Ni Niner	29 Cu 6000	30 Zn	31 Ga Detter	32 Ge	33 As Assession	34 Se totentum	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	A1 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta Trouburn	74 W Turgation	75 Re	76 Os ormun	77 Ir	78 Pt	79 Au	BO Hg	81 TI Thathan	82 Pb	83 Bi	B4 PO	85 At	B6 Rn
87 Fr Franktorn	Ra	-	104 Rf	105 Db ortester	106 Sg	107 Bh	108 Hs Jacobian	109 Mt	110 DS	Rg	112 Cn	113 Nh Master	114 Fl Flensstern	115 MC	116 LV	117 Ts	118 Og
			57 La	58 Ce	59 Pr	Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 HO	68 Er	69 Tm	70 Yb	71 Lu
			89 AC	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 ES	100 Fm	101 Md	102 NO	103 Lr

•Idea based on the incorrect *Bohr model of the atom*.

• The energy of the photon emitted depends on the energy of the upper state (E_{upper}) and the energy of the lower state (E_{lower}).

$$\Delta E_{photon} = E_{upper} - E_{lower}$$

• The *n* designations correspond to atomic orbitals while the letter designations (K, L, M...) correspond to shells in the older spectroscopic notation.

• The actual energies are determined from the Schrodinger equation of quantum mechanics.

•We need to determine a formula for the upper and lower energy states.

• Further, the letters are used to designate the shell to which the electron is transitioning.

• The Greek letters are used to designate the higher energy transitions and give the value of $\otimes n$.

• For example, the \langle -transition is a lower energy (higher probability) transition than the \mathbb{R} -transition (lower probability), which is in turn lower than the \mathbb{C} -transition.

• The K shell transitions are the highest energy transitions possible.

Thornton, S., & Rex, A., Modern Physics for Scientists and Engineers, 3rd Ed., Thomas Brooks Cole 151(2006).

• Moseley in 1913 empirically determined the relationship between the atomic number and the frequency of the x-ray emitted (or the energy of the x-ray emitted as is how we will use it). Plots like those on the right are called Moseley Plots.

• This is the most fundamental idea behind PIXE.

• It shows that for each atomic number (element) there are a characteristic set of x-ray wavelengths and energies emitted.

• Moseley found the relationship to be of the form:

$$Z = a\sqrt{f} + b$$

where *a* and *b* are constants from the fitting of a line to the data.

Thornton, S., & Rex, A., Modern Physics for Scientists and Engineers, 3rd Ed., Thomas Brooks Cole 152(2006).

A typical PIXE Spectrum

• When a vacancy is created in the K shell (n = 1 orbital), an electron in the L shell (n = 2 orbital) feels an effective charge of $(Z-1)e^{-}$. This is due to the Ze^{-} charge of the nucleus and the e^{-} remaining in the K shell. Thus, the net force on an L shell electron is towards the K shell and a de-excitation occurs.

• The transition energies are given by the Einstein relation

$$\Delta E_{photon} = E_{x-ray} = hf \approx -13.57 eV \left(\frac{1}{n_{lower}^2} - \frac{1}{n_{upper}^2}\right) Z^2$$

- The x-ray energies go as $(Z I)^2$ which produces the parabolic energy curves.
- Notice that if we rearrange the above equation and take a square root, we get the form that Moseley obtained, namely:

$$Z = a\sqrt{f} + b$$

Comments: Derivation of the Bohr Theory

• Energies and wavelengths are based on the Bohr Theory of the atom for an electron orbiting around a nucleus of charge Ze^{-} .

$$F_{\text{centripetal}} = F_{\text{electrostatic}} \rightarrow \frac{m_e v_e^2}{r_e} = \frac{Ze^2}{4\pi\varepsilon_0 r_e^2} \rightarrow v_e^2 = \frac{Ze^2}{4\pi\varepsilon_0 m_e r_e}$$

• Using the fact that the angular momentum of the electron $L = mv_e r_e$, we can write the above as

$$v_n = \frac{Ze^2}{4\pi\varepsilon_0 L}$$

• The angular momentum can also be represented as an integer multiple of Planck's constant, or the angular momentum is quantized.

$$L = n\hbar = n\frac{h}{2\pi}$$

• This is a completely non-classical or quantum mechanical result.

• Therefore, the velocities are quantized, meaning they only have certain allowed values. Ze^2

$$v_n = \frac{2e}{4\pi\varepsilon_0 n\hbar}$$

• Now, returning to angular momentum, we can express the orbital radius in terms of this velocity that we just found.

$$L = n\hbar = mv_n r_n \to r_n = \frac{n\hbar}{mv_n} = \frac{4\pi\varepsilon_0 n^2\hbar^2}{mZe^2}$$

- The orbital radius is thus also quantized.
- If we have, for example, hydrogen with Z = 1, the radius of the 1st orbital, known as the *Bohr radius*, is given as

$$r_1 = \frac{4\pi\varepsilon_0\hbar^2}{me^2}$$

• Substituting the values of the constants gives the value of the Bohr radius

$$r_{1} = \frac{4\pi \left(8.85 \times 10^{-12} \frac{C^{2}}{Nm^{2}}\right) \left(\frac{6.63 \times 10^{-34} Js}{2\pi}\right)^{2}}{9.11 \times 10^{-31} kg \times \left(1.6 \times 10^{-19} C\right)^{2}} = 5.31 \times 10^{-11} m$$

• One more thing about orbital radii...

$$r_n = \frac{4\pi\varepsilon_0 n^2\hbar^2}{mZe^2} = n^2 r_1$$

- The radius of the nth orbital can be expressed as an integer multiple of the Bohr radius.
- Now, this is nice and all, but we really want to be able to calculate the energy of individual orbits and then talk about differences in energy levels.
- This will allow us to talk about the x-rays emitted when an electron transitions between an upper orbital and a lower orbital.
- So, how do I calculate the energy of any orbital?
- The energy of an orbit is the sum of the kinetic energy of the electron and a potential energy due to its position with respect to the nucleus.

• The potential energy of a particle of mass m and charge -e a distance r from a heavy nucleus of charge +Ze is given as

$$V_n = -\frac{Ze^2}{4\pi\varepsilon_0 r_n}$$

• The energy of the orbit is given as

$$E = \frac{1}{2}mv_n^2 + V_n = \frac{1}{2}m\left(\frac{Ze^2}{4\pi\varepsilon_0 n\hbar}\right)^2 - \frac{Ze^2}{4\pi\varepsilon_0 \frac{4\pi\varepsilon_0 n^2\hbar^2}{mZe^2}}$$

boing the math... $E_n = -\frac{Z^2me^4}{2(4\pi\varepsilon_0)^2 n^2\hbar^2}$

Jones, C.C., Emeritus Professor of Physics, Union College, Lecture Notes

- And here we are, the energy of the nth orbital for a *hydrogen-like* (*1 electron*) atom.
- Notice energy is proportional to Z^2 that the and if you plot the atomic number, parabolic energy versus you get energy curves which is what Moseley obtained. The UCIBAI

D

The X-ray Energies

• The energies of an emitted x-ray are given as the difference between where the electron originates and where the electron is going to

$$\mathsf{D} E = E_{upper} - E_{lower}$$

• So, we have:

$$\Delta E = E_{upper} - E_{lower} = -\frac{Z^2 m e^4}{2(4\pi\epsilon_0)^2 n_{upper}^2 \hbar^2} - \left(-\frac{Z^2 m e^4}{2(4\pi\epsilon_0)^2 n_{lower}^2 \hbar^2}\right)$$
$$\Delta E = \frac{Z^2 m e^4}{2(4\pi\epsilon_0)^2 \hbar^2} \left(\frac{1}{n_{lower}^2} - \frac{1}{n_{upper}^2}\right) = hf = \frac{hc}{\lambda}$$
$$\rightarrow \Delta E = -13.6 eV \left(\frac{1}{n_{upper}^2} - \frac{1}{n_{lower}^2}\right) Z^2$$

- Next, we'll examine this formula and see what it tells us.....
- We'll calculate the K_{α} and K_{β} transition energies of a particular element.
- Then we'll discuss how well our results agree with experiments and look at a *PIXE* spectrum for a single element

