Chapter 7 — Momentum
We’ve talked the last few weeks about forces and how they relate to the
change in an object’s motion. We’ve also defined the motion of an object
through its momentum, or the product of its mass and velocity. Symbolically we
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write this as p = mv in units of =£=. Then the net force is time rate of change of

the objects momentum, and we call these Newton’s laws of motion.

= o_dp_
F == 1
net dt manet ( )

Consider an object of mass m. If net external force acting on the object is zero,

then for any non-zero time interval dr # 0, equation 1 becomes
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and the objects momentum is a constant and the object travels in a straight line at a

constant speed. Equation (2) is, of course, Newton’s 1* law of motion.

We call equation (1) an interaction and the object has to interact with something
in its environment in order for a force to be imparted on the object. Thus the object
interacts with something in its environment and the interaction of the object with the
environment exerts a force on the object. And by equation (1), this changes the
momentum of the object. We call the time interval in equation (1) the interaction

time. Thus we could write equation (1) as
dp=p,—p,=F, dt—>p,=p+F.d (3.

Equation (3) is called the impulse-momentum theorem, where we define the impulse

I given to an object as I = 17“’ At . Equation (3) implies that the change in the



momentum of the object is due to an interaction of the object with its environment
for a time dt. By assumption, the interaction time dt # 0 and if ﬁn , =0 then
equation (3) is merely a restatement of Newton’s 1* law of motion, equation (2). If
ﬁn ., # 0 then equation (1) is a measure of the interaction and we define the

interaction to be equation (1), which we have called Newton’s 2" law of motion.

Equation (1) gives us a way to quantify the interaction, or the change in motion and
this change in motion of the mass m we have called the acceleration a,, of the

system.

Suppose instead of a one mass system, that we have two objects of masses m,

and m, interacting. That is, m and m, are exerting forces on one another. At some
time, let the momenta p and p, of masses m, and m, respectively be given as shown
in figure 1 below. Masses m, and m, are interacting and the forces involved in their

interactions are given as F,and F, . F,,is the force exerted on massm, due to its
interaction with mass m,, while similarly £  is the force exerted on m, due to its

interaction with mass m, . The object with mass m, experiences a change in its

: . = dp . : .
momentum given by equation (1) as F|, = % due to its interaction with mass m, .

Figure 1: Two objects interacting, exerting equal and opposite
forces on each other.



Analogously, the object with mass m, experiences a change in its momentum
, ) - dp, o . : ,
given by equation (1) as F, = o due to its interaction with mass m, . By Newton’s

3" Jaw of motion we have Fl , = —]7“21 . Or, equivalently we can write

- - dp 7}
F,=-F, - D _ —% . This implies that the change in the momentum of the

system of masses m and m, does not change for any non-zero interaction time d,

which is of course the same for both objects interacting. Thus we can write

@4_@_1(—’] + —'2): dﬁsystem

7R p i 0. Therefore, using equation (1) we have that

P ysom = P sysiem ™ Pisgsiem = 07 P sysom = Prgwien (4 -

Equation (4) states that the total momentum of the system is constant and does
not change in time and thus the net force, by equation (1), that acts on the system
must be zero. We call equation (4) a statement of conservation of momentum. Total
momentum of the system is a conserved quantity and the total momentum of the
system does not change in during the interaction. The individual momenta of each of
the masses may change due the interaction, but the entire momentum of the system is
constant. We have to be careful of how we define our system.

Example 1: Suppose that a ball of mass m =200g is thrown at a wall at an angle of
6 = 60", measured with respect to the vertical, as shown in Figure 2. What
are the components of the changes in the ball’s momentum, Ap and Ap,
respectively? What is the change in the ball’s momentum, Ap, if the ball
has an initial speed of v, =5 and a final speed approximately equal to that

of the initial speed. If the ball is in contact with the wall for a time of
At =0.2s , what force does the wall exert on the ball? What force does the
ball exert on the wall?
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Figure 2: A ball is thrown off at a wall and
bounces off at approximately the same speed as
it was incident.

Solution: The change in the components of the momentum for the ball, assuming that
the wall doesn’t move is given as

Ap . =p,—p,=—mv, —my, ==2my, sinf =-2x0.2kg X 52 x sin60 = —1.73@

= —p = - = - —(kem
Ap,=p,—p,=mv, —mv, =mv,cosd—mycosf=0

N

Thus the change in momentum of the ball is

A
Ap = |Ap> + Ap” @¢ =tan™ i
x y Apx

kg-m

=73 (0% @t 25

Ap=1.73%5"@¢=180°

The ball experiences a change in momentum horizontally but continues to
move vertically upward.

The wall exerts a force on the ball given by

" AP 1.73%”
F;)all,wall = E = W@Q) = 1800 = 865N@¢ = 1800 .

By Newton’s third law, the ball exerts a force of equal magnitude but
opposite direction on the wall. Thus F it = 865N @9 =0°

Example 2: Consider the following system, shown in Figure 3, in which two blocks of
masses mand 3m respectively are placed on a horizontal, frictionless
surface. A light (i.e. massless) spring is attached to one block and the
blocks are squeezed together and tied by a light cord. If the cord is cut and

the block of mass 3m moves to the right with a speed of av, =2%, what is

the speed of the block of mass m?



Figure 3: Two masses on a horizontal surface for Example 2.

Solution: Since the momentum of the system is conserved we have, from equation (4),
Apsysm =p,—P;= 0, with p =0. Thus we can write our statement of conservation of

momentum as:

Apsystem =p,—P;= 0— p,=mv, +(3m)v3m =0

SV =— v =—3v3m=—3x2%=—6%

m 3m

Therefore the block of mass mmoves to the left (as expected if the block of
mass 3m moves right) at a speed of 6.

Example 3: In Example 2, how much energy was initially stored in the compressed
spring, if the mass of the smaller block is m = 0.35kg ?

Solution: 1f we take the system as the two masses, the spring, and the world, then
change in energy of the system is zero. We have

=0=AK, +AK, +AU, +AU, =(Lmv: —0)+(1(3m)v2, —0)+ (U, -U,,)

system

n U, =tmv? +1(3m)v2, = %(0.35kg)[(—6%)2 + 3(2%)2} =8.4J
Collisions

Returning to Figure (1) we have two objects coming together, interacting and then perhaps
moving apart again. Whether the objects make physical contact or not, this is an example of a
collision. To begin our study collisions between two objects let’s take two objects and make

them interact (collide) in one dimension. Consider Figure 4 below, which shows an object of

mass m, moving with a velocity v,,. In order to make the problem less algebraically intensive,
let us take the mass m, to be initially at rest. Of course, mass m, could be moving in the same

direction as mass m, or mass m, could be moving directly at mass m, . We’ll worry about that



in a bit. Our goal here is to determine the velocities of the both masses after the collision.

This of course depends on the type of collision.

Vil
Vo2 = 0

Figure 4: Mass m; moves to the right at an initial
velocity v;; and collides with mass m; initially at rest.

There are two types of collisions that we will investigate and they are called inelastic and
elastic. No matter which type of collision we investigate, if the collision time is small and we
assume that there are no external forces acting on the masses during the collision, then
momentum is conserved, as is given by equation (4). What separates the collision types is
whether the energy due to the motion of the objects, that is the kinetic energy, is conserved or
not. In general, the total kinetic energy of the system of objects is not a conserved quantity
since there are energy losses to sound (you can hear the objects collide) and deforming the
objects (think cars crumpling when they collide) but we can approximate situations in which

the kinetic energy is conserved.

Inelastic Collisions

Inelastic collisions are those in which the momentum is conserved but the kinetic energy is
not. Total energy is always conserved. Consider the following situations in which we have
two objects colliding. Returning to Figure 4 above suppose that the two objects stick together
after the collision, as shown in Figure 5 below. We would like to determine the velocity of the
system after the collision? To determine the velocity we apply conservation of momentum, and

assuming that to the right is the positive x-direction, we have

Apx:pﬁc_pix:o

P =Dy my,=my tmy, = (m1 + mz)V
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Figure 5: Mass m; moves to the right at an initial velocity v;; and collides with
mass m; initially at rest. After the collision, masses m; and m, move off together
with a common velocity V.

Solving for the velocity of the system after the collision we get V' = [ +1 ]vli A m > m,
ml m2

then the velocity of the system after the collision V' is approximately equal to the velocity of
m, before the collision, v,,. If m < m, then the velocity of the system after the collision V' is
very small compared to the velocity of m, before the collision, v, , but it is not zero. Next, let

us calculate the kinetic energy before and after the collision and then the change in kinetic

energy. If kinetic energy is conserved, then AK = 0 ; otherwise it is not. The kinetic energy

before the collision is K, = %mlvfi. The kinetic energy after the collision is

2 2
Kf:%(m +m2)V2:%(m +m) el V5 :%[ 1 Jvlzl Taking the difference,

which I’'m not going to physically write out, we get that the change in kinetic energy is not

equal to zero and thus kinetic energy is not conserved. The difference between K and K is

the energy lost to the collision, as heat, deforming the objects, and sound.

Before we move on to elastic collisions let’s do one more example, but with some numbers.
Again, as in Figure 4, let the cars collide but this time let them not stick together after the

collision, but rather move separately but in the same direction, as seen in Figure 6. Let the cars

have masses m, =1200kg and m, = 9000kg with velocities v, =252 and v, =204, initially,

respectively. After the collision let the velocity of car 1 be v, , =184 while the velocity of car



2 is unknown, call it v, .. Let’s determine the velocity of car 2 by applying conservation of

momentum.

Ap.=p,—p,=0

LD, = Dy My, tmy, =my, +my

2f
L my = my, (1200kg x 25) +(9000kg x 20) - (1200kg x 182) _ 200
2 m, 9000kg o
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Figure 6: Mass m; moves to the right at an initial velocity v;; and collides with

mass m, moving to the right with velocity v,;. After the collision, masses m; and m;,
move off separately with final velocities v;rand ,»r.

If this is an inelastic collision then the change in kinetic energy should be zero. To see
whether the change in kinetic energy is zero or not, calculate the initial and final kinetics
energies before and after the collision. The initial kinetic energy is
,=my2 +imy? =1 x1200kg % (252) +1x9000kg x (202)" = 2.18x 10°./, while the final
S=tmyi +imy? = 1x1200kg x (182)° +1x 9000kg x (20.9) =2.16x10°J . The
change in kinetic energy is AK =K - K, = (2.18 - 2.16) x10°J =20000./ is lost to the

collision. This is an inelastic collision, but not by that much.
Elastic Collisions

Elastic collisions conserve both momentum and kinetic energy. For macroscopically sized

objects, completely elastic collisions are an approximation. Consider Figure 7 below in which

mass m, is moving to the right at an initial speed v,,, while mass m, , located to the right of



mass m,, is initially at rest. Mass m, collides elastically with mass m, and we would like to
calculate the final velocities of each of the masses after the collision, v, ,and v, . Assuming

that no external forces act during the collision, we apply conservation of momentum and

kinetic energy to determine the two unknown velocities.
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Figure 7: Mass m; moves to the right at an initial velocity v;; and collides with
mass m; at rest. After the collision, masses m; and m, move off separately with
final velocities v;rand vy

Here we assume that both masses are moving to the right after the collision. In

particular, mass m, will most likely move to the right after the collision while mass

m, may move to the right or it could move to the left. We’ll determine the actual

directions by solving the equations for momentum and kinetic energy. Applying

conservation of momentum and kinetic energy we get

Apxystem = 0 - pi,system = pf,system - mlvli = mlvlf + m2v2f

_ _ 1 2 _ 1 2 1 2
AK - O - Ki,system - Kf,system - 2 mlvli ) mlvlf + 2 m2V2‘

r

We have two equations and two unknowns. From the equation for momentum, we

solve for the velocity of mass m, after the collision v, -and substitute this into the equation

2
L2 12 ] n 2
_— — —-— 1 J—
(Vn vlf)and Ty =g my +om, - (v“ vlf) .

2

.

m,

for kinetic energy. Thus v, =



After some algebra we can determine expressions for the final velocities of mass m and m,

after the collision. We find

vlf z(ml_mzjv” (5(1)

m, +m2

vzfz( 2m, ]vu (5b)

ml+m2

Let’s check some limiting cases of the masses to see if equations 5a and 5b seem

reasonable. Suppose that m < m,. Equations (5a) and (5b) become

m —m 2m ) .
v, =| —/—= v, ~-v,and v, = — |v,, ~ Orespectively. Here the lighter
: m +m, : m +m,

mass m, bounces off of the heavier mass m, in the opposite direction with very little

loss in speed and mass m, remains stationary. If m > m,, equations (5a) and (5b)

m —m 2m .
become v, = —2 |y, ~v and v, ;= — |v,,~2v,,. Here the heavier
: m +m, m, +m,

mass m, keeps going in the same direction with little loss of speed while the lighter
mass m, gets a large kick in speed. If the two masses are approximately equal

m, —m,

m, +m2

m, ~ m,, equations (5a) and (5b) become v, = ( Jvli ~0and

2m .
vy, = { L v, ~v,. Here the incident mass m, comes to rest and mass m,
m, +m
1 2

leaves with the speed of the incident mass. Equations (5a) and (5b) therefore seem

reasonable.

Example 4: Consider the frictionless track ABC as shown below in Figure 8. A block
of mass m, = 5kg is released from point A. It makes a head-on collision at

point B with a block of mass m, =10kg , initially at rest. What is the



maximum height to which mass m, rises back up the track after the

collision? In addition, suppose that just past point C there is a rough
region in which the coefficient of friction is £ =0.9. After how much

distance would block come to rest?

B C

Figure 8: Two masses on a frictionless track.

Solution: Assuming mass m and the world are the system, energy is conserved.

Applying conservation of energy between points A and B (just before m,
collides with m, ) we have

AE=AK +AU_ +AU =0

= (tmy? ~0)+(0-mgy,)+(0-0)=0

v, =20, =\[2%9.8%x5m =9.94

During the collision between blocks m, and m, at point B, total momentum

of the system is conserved and if we model this as a completely elastic
collision, kinetic energy is also conserved. Applying conservation of
momentum and kinetic energy during the collision we have

Apsystem = O - p i,system = p f,system - mlvli =my, + m2v2v

11y A
_ _ 1 2 _ 1 2 1 2
AK - 0 - Ki,system - Kf,system - 2 mlvli 2 mlvlf + 2 m2v2f

The solutions are given by equations 5a and 5b. We have

S i A (—Skg_mkg)w.% =332
: m, +m, Skg+10kg

2
v, =| — vll:(ﬂ}@Q%:ﬁS%
m +m, Skg +10kg ‘ ‘




To determine the height mass m, rises back up the track after the collision

we apply conservation of energy and we have
AE=AK +AU_ +AU =0

—(0=Lmy2)+(mgy, —0)+(0-0)=0

i (331 0.56m
YnT2g T ax08n

Mass m, moves to the right after the collision and when it encounters the

rough surface, friction does work on mass bringing it to rest. The distance
traveled by mass m, is given by

W, =AK — F,Axcos@ = uF, Axcos =3 m,v; —3m,v;,

V2 (6.5%)2

— 2i

= = =2.4m
2ug  2x0.9x9.8%

Collisions in two-dimensions
The development of equations (1) — (4) apply whether the motion is in one or

more than one dimension. Consider the arrangement of masses shown in Figure 9.

Let mass m, be incident along the x-axis with velocity v, and let mass m make a
glancing collision with mass m, initially at rest. Take the origin of the coordinate
system be at mass m, . After the collision mass m, scatters at an angle 6 measured

with respect to the x-axis while mass m, scatters at angle ¢, also measured with

respect to the x-axis.

<
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Figure 9: Two masses undergo a glancing collision in two-dimensions.



We can see where mass m, goes after the collision, so we assume that we
know of can measure 6. We would like to calculate the velocities of each of the
masses after the collision (v, and v, ) and the scattering angle of mass m, , ¢.
Assume the collision is elastic and we conserve momentum in the x- and y-directions

as well as kinetic energy. Conservation of momentum horizontally and vertically

gives us

X: mlvll_:mlvlfcose+m2v2fcos¢ (6a)

y: 0=my, sin6- my, sing (6D)
while conservation of kinetic energy gives

1 =1 241 2
2V =Yy, t3 MV, (7).

In theory the above three equations (6a), (6b), and (7) are solvable for the
three unknowns that we have. However, the algebra can be challenging. Let’s do

this by using some numbers. First, let m =m, =mand v =32, What are the final
velocities of each mass after the collision and at what angle ¢ does mass m, scatter if

mass m, scatters at 6 = 35°? Conservation of momentum horizontally and vertically
becomes
XV, =V,

,C0s0+v, cos¢

y: 0=v sinf-v, sing

and conservation of kinetic energy is given as
2 _ .2 2

V=V Y,

To solve we first square the x- and y-momentum equations, add the results together

and then use conservation of kinetic energy.



2
1f

. 2 a2 2 .2
yi 0=v/ sin"0+v, sin"¢—2v

L2 2 2 2
X1 v, =V, cos 0+v, cos"¢+2v v, cosfcosd

ey sinf@sing

2 2 2 s 2 2 2 2 . .
— v, =v1f(cos 0 +sin 9)+v2f(cos @ +sin ¢)+2v1/,v2f(cosecos¢—sm951n¢)

Using conservation of energy we get, noting that sin’ o +cos” o = 1

2 2 . .
=V, Vv, +2v v (cos@cosd)—sm@sm(p).

22 2
vli—v1/.+v2 Vas

;

The expression in parentheses is a trigonometric identity,
cosfcos¢p—sinfsing = cos(@ +¢) .

Now we can determine the scattering angle ¢ of m,. We have, assuming that

vlf;éOandvzf;tO

0=2v, v, cos(0+¢)—>cos(0+¢)=0—0+¢=35"+¢p=90"

s¢=55

Here we note that IF and ONLY IF m = m, the masses scatter at right angles
to each other. If the masses are not equal then we have to go back equations (6a),
(6b), and (7) and solve the problem with the unequal masses. Now that we have the
scattering angle we can use equations (6a) and (6b) to solve for the final speeds of

each mass after the collision. From equation (6b) we solve, say, for v, ., and get

212

inf in35 . . .
v, = (&]VU_ = (sm )vl ;=0.7v, . Inserting this into equation (6a) we can

sing sin55
determine v, e We have

Vv, 3m
c0s35+(0.7,, Jeos55=1.22v,, >, = == =246%. And lastly

Viies=Viy

v, =07y, =0.7x2.462=1.722



Of course we’ve also looked at inelastic collisions in which momentum is
conserved, but not kinetic energy. How about we look at an inelastic collision in two
dimensions. Consider the traffic accident shown in Figure 10 below in which two
vehicles, a car (in blue) and a van (in green) approach an intersection. Both fail to
stop and the cars collide, stick together and move off with a common final velocity.

What is the final velocity of the cars after the collision?

me

iy

V,‘¢ m,,

Figure 10: Inelastic collision of two vehicles at an intersection. The
vehicles move off together after the collision.

Let’s take up the page as the positive y-direction and to the right as the
positive x-direction. Applying conservation of momentum horizontally and
vertically we have

X: V. =(mc+mv)Vc050

mC i

y: my = (mc +mv)Vsin9 '

Dividing these two expressions will allow us to determine the angle 6 that the
velocity vector makes with the horizontal. Once we know the angle we can use

either momentum equation to determine the final speed V of the car and van after the

collision. The angle is determined as



my, (mc+mv)Vsin0 _ tand

myv, B (mc + mv)VCOSQ

my.  2500kgx202

= =133-560=53.1
my. . 1500kgx252

tan@ =

The final speed of the car and van after the collision is

my, =(m +m )Veos@—p =—le . DOORXIT 50,
e Ve (m,+m, )cos® (1500kg +2500kg)cos53.1 '

Summary

We’ve looked at momentum and its conservation in one and two dimension.
We’ve also looked at two types of collisions between objects, namely inelastic and
elastic. Elastic collisions conserve momentum and kinetic energy. Inelastic
collisions conserve momentum only, with some of the energy of motion being lost to
sources like heat, light, sound and deforming the objects. Both collisions conserve
total energy. Unless explicitly stated, in order to truly tell if a collision is elastic or
not, one needs to calculate the change in kinetic energy. If the change is zero, the
collision is elastic. If the change is not zero then the collision is inelastic.

Let’s try a few more examples for practice.

Example 5: Rutherford Backscattering Spectroscopy

Alpha particles are routinely accelerated using a particle accelerator and are
directed with the use of magnets into targets composed of various elements.
A famous experiment called Rutherford’s experiment has a beam of alpha
particles incident on a target of gold. An alpha particle (a helium nucleus) is
accelerated to a certain speed and makes an elastic head-on collision with a
stationary gold nucleus. What percentage of its original kinetic energy is
transferred to the gold nucleus?



Solution:
The percent kinetic energy lost is given by
2 1 2
%last — 1 _ KEafter X 100% — 1 _ %mava,after collisilon + 25 vau,after collision % 100%
MV,

initial

We need to determine both the final speed of the alpha particle and the gold
nucleus after the collision. To do this we apply conservation of momentum
and kinetic energy. From conservation of momentum we have

myv,, =m,v,,+m,v,  and from conservation of kinetic energy

1 2 _1 2 1 2
Emav[,a - Emavf,a +5 mAqu,Au'

Here we have two equations and two unknowns. From momentum we solve

for the final velocity of the alpha particle and obtainv, , =v, , — ALy o
o
We square this result and substitute into the equation for kinetic energy we

obtain a quadratic equation in the final velocity of the gold nucleus. The

2
quadratic equation is 0 = ( mA” +m,, ]vj s (Zm Vi )v - Using the

o

2m,
quadratic formula we find the solutionsv, ,, = [ m,+m,, }v’?‘" and reject
0

the zero speed solution. Substituting this result into our equation for the
final speed of the alpha particle and we calculate the final speed to be

N2 i,o [, Au
m ma +mAu

o

Vg =V, My, o [M }w. So the percent of the initial kinetic
energy lost is
1

[ KEafter 2 m(xvozc after collision + % mvlz\u after collision
Yory =|1- —2< |x100% = 1— ’ : x100%

initial

Yor0e =1 1= x100%

2 2
%, =|1=| Me=Ma | 4 [ 2| |x100%
ma+mAu ma+mAu

Using the mass of an alpha particle of 4u and of gold /97u, we have



2 2
%lost = 1_(’”0{ _mA“ J +mAu[ 2 ) XIOO%
m(x +mAu mw +mAu

2 2
=|1- 4-197 +197 2 x100% = 9.8%
4+197 4+197

Example 6: Ice Hockey

A hockey puck traveling at 1.2 collides with a second stationary equal mass puck

and, after the collision, moves with a speed of 0.8 deflected by an angle of 30°.

What is the velocity (magnitude and direction) of the other puck after the collision?
In addition, what is the fraction of the initial energy lost in the collision?

Solution: Using a standard Cartesian coordinate system we apply conservation of
momentum in the horizontal and vertical directions and we have

Dix = Py — mvy, =mv, cos@+mv, cosg — v, =v, cost+v, cospand

Dy =Ps > 0=my sin@—-mv,sing - 0=v,sinf—-v,sing.

Here we have two equations and two unknowns, v, and ¢ . Inserting the

numbers from the problem we have for the horizontal and vertical directions
Vin =V, €086 +v, cosg = v, cos¢g =0.51andv, sing =0.4.

Dividing these two expressions we solve for the unknown angle and find

tan ¢ = % =0.7843 — ¢ =tan"'(0.7843)=38.1°. Therefore the unknown

velocity isv, sing =v, sin38.1=0.4 = v, =0.652.

The fraction of the initial energy lost is

2 1 2 2 2
%, = |:] _ KE,,, :|>< 100% = I:l _ 2MViatercottision 3 V2 afer coltsion :IX 100% = I:l _ Viafercoltision + Vaateercollision %100%

L2 2
AL Viix

initial

m m 2
%,‘m:[l— mM]XIOO%:{l—(OB‘E;(O)'fSS)}XIOO%:%.Z%
m+ om




Example 7: A bullet in a block on a horizontal surface

Solution:

A 10g projectile is fired at 5002 into a 1kg block sitting on a

frictionless horizontal surface. The projectile lodges in the center of
the block, and both move off together.

a.

b.

What is the final velocity of the block after the collision?

The block slides along the frictionless surface some distance and

then encounters a ramp, which slopes up at an angle of 60°. What
distance does the block travel along the surface of the ramp before
coming to a stop?

If the coefficient of friction between the block and the ramp is ©=0.2,
how far does the block slide up the ramp before stopping?

Assuming that the positive x-direction is to the right we apply conservation
of momentum. We find for the velocity after the collision

m,v;,  0.01kgx500%
(m, +m,)  1.0lkg

pix:pfx_)mbvi:(mb+mbz)V_)V: =495~

to the right.

Define d as the distance the block slides along the ramp and / as the
height the block rises above the horizontal, we have from the geometry

sinf = g — h=dsin@. Applying conservation of energy between the
bottom of the ramp and where the block comes to rest we have
AE=0=AU_+AKE = (mgyf —mgyl_)+(%mvi, —%mvl_z)

0= mgh—imv.2 = mgdsine—imv2

4 95’”
=1.44m
2gsm0 2><9 824 sm60

In the presence of friction, energy is lost to heat between the surfaces. To
calculate the new distance we use
AU, +AKE =-AE

friction

1 2 1 2\ _
(mgyf - mgyi )+ (E mvf ) mvi )_ _Fﬁictinn X dnew

1 2 _ ; 1 2 _
mgh—5mv; =mgd,, sin@—5mv: =— mgcoséd,,,

V2 (4.95m)
“d,,, = — = : =1.29m
2g(sin @+ 1, cosB) 2X9.8Sﬂ2(sm 60+0.2cos60)



Example 8: Fireworks

Solution:

A rocket used for fireworks explodes just when it reaches its highest point in a
vertical trajectory. It initially bursts into three fragments with masses of m, 3m,
and 4m , each of these to explode slightly later. If the 4m fragment falls

vertically downward with an initial velocity of 82, and the 3m fragment is

ejected with a velocity of 102 at an angle of 30° above the horizontal, what is
the velocity of the third fragment?

At the highest point of the rocket’s motion, its velocity is zero. Therefore the
initial x- and initial y-momenta are both zero when the rocket explodes. After
the explosion we apply conservation of momentum in the vertical and horizontal
directions. Assuming that the piece of mass m has a momentum in the same
quadrant as the 3m piece.

In the vertical direction 0 =—4m(82)+3m(102)sin 30+ mvsin ¢ — 17 = vsin .

In the horizontal direction we have
0=3m(102)cos 30 +mvcos$ — —25.98 = vsin ¢.

Here we have that the x- component of the velocity is negative, while the y-
component is positive, so the momentum vector lies in the 2™ quadrant, our
guess was incorrect, but that’s ok. Now we know. Taking the ratio of these two

equations produces an angle of 33.2°above the negative x-axis. Then using any
one of the above equations we find for the magnitude of the velocity to be 312 .

Example 9: Proton scattering

A proton moving with an initial velocity v, in the x-direction, as shown in Figure

11, collides elastically with another proton that is initially at rest. If the two protons
have equal speeds after the collision, what is the speed of each proton after the

collision in terms of v,_, and what are the directions of the velocity vector after the

collision?

Figure 11: An incident proton scattering off a stationary proton.



Solution: We break up the momentum into x and y-components and use conservation of
momentum in each direction. We have in the x-direction
Di. = P — mv,, =mvcos@+mvcosg, while in the y-direction

Dy, =Py > 0=mvsin@—myvsing —>sinf=sing -6 =9¢.

Using the results from the vertical motion we rewrite the x-momentum as
v, =vcosf+vcosg=2vcosg.

Next we use the kinetic energy to obtain an expression for v, in terms of v so that
we can determine the unknown angle ¢ . Conservation of energy gives

KE, =KE, »imv, =imv’ +imv’ —>v. =2V’ >, =2v.

Therefore we have the magnitude of the velocity after the collision asv = vf And
2
from the x-momentum we calculate the angle to be
2 .
Vv, = J2v=2v COSP — cosp = g — ¢ =45°. The angle of the velocity vector after

the collision is ¢ =0 = 45",



