
Chapter 7 – Momentum 
 

 We’ve talked the last few weeks about forces and how they relate to the 

change in an object’s motion.  We’ve also defined the motion of an object 

through its momentum, or the product of its mass and velocity.  Symbolically we 

write this as   
!p = m!v in units of  

kg⋅m
s .  Then the net force is time rate of change of 

the objects momentum, and we call these Newton’s laws of motion.  

   

!
Fnet =

d!p
dt

= m!anet (1)  

Consider an object of mass  m .  If net external force acting on the object is zero, 

then for any non-zero time interval   dt ≠ 0 , equation 1 becomes 

   

!
Fnet = 0 = d!p

dt
→ d!p = 0→ !p f =

!pi (2)  

and the objects momentum is a constant and the object travels in a straight line at a 

constant speed.  Equation (2) is, of course, Newton’s 1st law of motion. 

 

We call equation (1) an interaction and the object has to interact with something 

in its environment in order for a force to be imparted on the object.  Thus the object 

interacts with something in its environment and the interaction of the object with the 

environment exerts a force on the object.  And by equation (1), this changes the 

momentum of the object.  We call the time interval in equation (1) the interaction 

time.  Thus we could write equation (1) as 

   
d!p = !p f −

!pi =
!
Fnetdt → !p f =

!pi +
!
Fnetdt (3).  

Equation (3) is called the impulse-momentum theorem, where we define the impulse 

  
!
I given to an object as   

!
I =
!
Fnetdt .  Equation (3) implies that the change in the 



momentum of the object is due to an interaction of the object with its environment 

for a time  dt .  By assumption, the interaction time   dt ≠ 0 and if    
!
Fnet = 0  then 

equation (3) is merely a restatement of Newton’s 1st law of motion, equation (2).  If 

   
!
Fnet ≠ 0 then equation (1) is a measure of the interaction and we define the 

interaction to be equation (1), which we have called Newton’s 2nd law of motion.  

Equation (1) gives us a way to quantify the interaction, or the change in motion and 

this change in motion of the mass  m  we have called the acceleration   
!anet of the 

system. 

Suppose instead of a one mass system, that we have two objects of masses   m1

and   m2 interacting.  That is,   m1 and   m2 are exerting forces on one another.  At some 

time, let the momenta    
!p1 and    

!p2 of masses   m1 and   m2 respectively be given as shown 

in figure 1 below.  Masses   m1 and   m2 are interacting and the forces involved in their 

interactions are given as 
   
!
F1,2 and 

   
!
F2,1 .  

   
!
F1,2 is the force exerted on mass  m1 due to its 

interaction with mass  m2 , while similarly
   
!
F2,1 is the force exerted on   m2 due to its 

interaction with mass   m1 .  The object with mass   m1 experiences a change in its 

momentum given by equation (1) as 
   

!
F1,2 =

d!p1

dt
due to its interaction with mass   m2 .   
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!
F2,1 = −

!
F1,2

Figure 1:  Two objects interacting, exerting equal and opposite 
forces on each other.   



Analogously, the object with mass   m2 experiences a change in its momentum 

given by equation (1) as 
   

!
F2,1 =

d!p2

dt
due to its interaction with mass   m1 .  By Newton’s 

3rd law of motion we have
   
!
F1,2 = −

!
F2,1 .  Or, equivalently we can write

   

!
F1,2 = −

!
F2,1 →

d!p1

dt
= −

d!p2

dt
.  This implies that the change in the momentum of the 

system of masses   m1 and   m2 does not change for any non-zero interaction time  dt , 

which is of course the same for both objects interacting.  Thus we can write

   

d!p1

dt
+

d!p2

dt
= d

dt
!p1 +
!p2( ) = d!psystem

dt
= 0 .  Therefore, using equation (1) we have that  

   
d!psystem = !p f ,system − !pi,system = 0→ !p f ,system = !pi,system (4) . 

Equation (4) states that the total momentum of the system is constant and does 

not change in time and thus the net force, by equation (1), that acts on the system 

must be zero.  We call equation (4) a statement of conservation of momentum.  Total 

momentum of the system is a conserved quantity and the total momentum of the 

system does not change in during the interaction.  The individual momenta of each of 

the masses may change due the interaction, but the entire momentum of the system is 

constant.  We have to be careful of how we define our system. 

Example 1:  Suppose that a ball of mass   m = 200g  is thrown at a wall at an angle of 

 θ = 600 , measured with respect to the vertical, as shown in Figure 2.  What 
are the components of the changes in the ball’s momentum,  Δpx and  

Δpy

respectively?  What is the change in the ball’s momentum,   Δ
!p , if the ball 

has an initial speed of   vi = 5 m
s and a final speed approximately equal to that 

of the initial speed.  If the ball is in contact with the wall for a time of 
  Δt = 0.2s , what force does the wall exert on the ball?  What force does the 
ball exert on the wall?  

 
 



 
 
 
 
 
 
 
 
 
 
 

Solution:   The change in the components of the momentum for the ball, assuming that 
the wall doesn’t move is given as 

 
 

  

Δpx = p fx − pix = −mvix − mvix = −2mvi sinθ = −2× 0.2kg ×5 m
s × sin60 = −1.73 kg⋅m

s

Δpy = p fy − piy = mv fy − mviy = mvi cosθ − mvi cosθ = 0 kg⋅m
s

 
 
  Thus the change in momentum of the ball is  

  

   

Δ!p = Δpx
2 + Δpy

2 @φ = tan−1 Δpy

Δpx

⎛

⎝
⎜

⎞

⎠
⎟

Δ!p = 1.73 kg⋅m
s( )2

+ 0 kg⋅m
s( )2

@φ = tan−1 0 kg⋅m
s

−1.73 kg⋅m
s

⎛

⎝⎜
⎞

⎠⎟

Δ!p = 1.73 kg⋅m
s @φ = 1800

 

 
 

The ball experiences a change in momentum horizontally but continues to 
move vertically upward. 

 
The wall exerts a force on the ball given by 

   

!
Fball ,wall =

Δ!p
Δt

=
1.73 kg⋅m

s

0.2s
@φ = 1800 = 8.65N @φ = 1800 . 

By Newton’s third law, the ball exerts a force of equal magnitude but 
opposite direction on the wall.  Thus 

   
!
Fwall ,ball = 8.65N @φ = 00 . 

 
Example 2:   Consider the following system, shown in Figure 3, in which two blocks of 

masses mand   3m respectively are placed on a horizontal, frictionless 
surface.  A light (i.e. massless) spring is attached to one block and the 
blocks are squeezed together and tied by a light cord.  If the cord is cut and 
the block of mass   3m  moves to the right with a speed of a  v3m = 2 m

s , what is 
the speed of the block of mass  m?   

 
 

m 

m 

θ	

θ	

vi 

vi 

Figure 2:  A ball is thrown off at a wall and 
bounces off at approximately the same speed as 
it was incident.   



 
 
 
 

 
 
 

Solution:  Since the momentum of the system is conserved we have, from equation (4), 

  
Δpsystem = p f − pi = 0 , with   pi = 0 .  Thus we can write our statement of conservation of 
momentum as: 
 

    

Δpsystem = p f − pi = 0→ p f = mvm + 3m( )v3m = 0

∴vm = −
3m( )
m

v3m = −3v3m = −3× 2 m
s = −6 m

s

 

 
Therefore the block of mass  mmoves to the left (as expected if the block of 
mass   3m moves right) at a speed of   6

m
s . 

 
 
Example 3:  In Example 2, how much energy was initially stored in the compressed 

spring, if the mass of the smaller block is   m = 0.35kg ? 
 
Solution:  If we take the system as the two masses, the spring, and the world, then 

change in energy of the system is zero.  We have

  

ΔEsystem = 0 = ΔKm + ΔK3m + ΔUg + ΔUs =
1
2 mvm

2 − 0( ) + 1
2 3m( )v3m

2 − 0( ) + US , f −US ,i( )
∴US ,i =

1
2 mvm

2 + 1
2 3m( )v3m

2 = 1
2 0.35kg( ) −6 m

s( )2
+ 3 2 m

s( )2⎡
⎣⎢

⎤
⎦⎥ = 8.4J

 
Collisions 

 
 Returning to Figure (1) we have two objects coming together, interacting and then perhaps 

moving apart again.  Whether the objects make physical contact or not, this is an example of a 

collision.  To begin our study collisions between two objects let’s take two objects and make 

them interact (collide) in one dimension.  Consider Figure 4 below, which shows an object of 

mass   m1 moving with a velocity   v1i .  In order to make the problem less algebraically intensive, 

let us take the mass   m2 to be initially at rest.  Of course, mass   m2 could be moving in the same 

direction as mass   m1  or mass   m2 could be moving directly at mass   m1 .  We’ll worry about that 

3m m m 3m 

vm v3m 

Figure 3:  Two masses on a horizontal surface for Example 2. 



in a bit.   Our goal here is to determine the velocities of the both masses after the collision.  

This of course depends on the type of collision.   

 
	
	
	
	
	

 
 
 There are two types of collisions that we will investigate and they are called inelastic and 

elastic.  No matter which type of collision we investigate, if the collision time is small and we 

assume that there are no external forces acting on the masses during the collision, then 

momentum is conserved, as is given by equation (4).   What separates the collision types is 

whether the energy due to the motion of the objects, that is the kinetic energy, is conserved or 

not.  In general, the total kinetic energy of the system of objects is not a conserved quantity 

since there are energy losses to sound (you can hear the objects collide) and deforming the 

objects (think cars crumpling when they collide) but we can approximate situations in which 

the kinetic energy is conserved. 

 
Inelastic Collisions 
 
 Inelastic collisions are those in which the momentum is conserved but the kinetic energy is 

not.  Total energy is always conserved.  Consider the following situations in which we have 

two objects colliding.  Returning to Figure 4 above suppose that the two objects stick together 

after the collision, as shown in Figure 5 below.  We would like to determine the velocity of the 

system after the collision?  To determine the velocity we apply conservation of momentum, and 

assuming that to the right is the positive x-direction, we have 

  

Δpx = p fx − pix = 0

∴ pix = p fx → m1vi1 = m1v1 f + m2v2 f = m1 + m2( )V  

m1 m2 

vi1 v2i = 0 

Figure 4:  Mass m1 moves to the right at an initial 
velocity v1i and collides with mass m2 initially at rest. 



 
 
 
 
 
 
 
 
 
 

Solving for the velocity of the system after the collision we get 
  
V =

m1

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i .  If    m1≫ m2

then the velocity of the system after the collision  V is approximately equal to the velocity of 

  m1 before the collision,  v1i .  If    m1≪ m2  then the velocity of the system after the collision  V is 

very small compared to the velocity of   m1 before the collision,  v1i , but it is not zero.  Next, let 

us calculate the kinetic energy before and after the collision and then the change in kinetic 

energy.  If kinetic energy is conserved, then  ΔK = 0 ; otherwise it is not.  The kinetic energy 

before the collision is   Ki =
1
2 m1v1i

2 .  The kinetic energy after the collision is 

  

K f =
1
2 m1 + m2( )V 2 = 1

2 m1 + m2( ) m1
2

m1 + m2( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

vi1
2 = 1

2

m1
2

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
vi1

2 .  Taking the difference, 

which I’m not going to physically write out, we get that the change in kinetic energy is not 

equal to zero and thus kinetic energy is not conserved.  The difference between  
K f and  Ki is 

the energy lost to the collision, as heat, deforming the objects, and sound. 

	
Before we move on to elastic collisions let’s do one more example, but with some numbers.  

Again, as in Figure 4, let the cars collide but this time let them not stick together after the 

collision, but rather move separately but in the same direction, as seen in Figure 6.  Let the cars 

have masses   m1 = 1200kg and   m2 = 9000kg with velocities   v1i = 25 m
s and   v2i = 20 m

s , initially, 

respectively.  After the collision let the velocity of car 1 be   
v2 f = 18 m

s while the velocity of car 

m1 m2 

vi1 v2i = 0 

Figure 5:  Mass m1 moves to the right at an initial velocity v1i and collides with 
mass m2 initially at rest.  After the collision, masses m1 and m2 move off together 
with a common velocity V. 

m2 m1 

V 



2 is unknown, call it   
v2 f .  Let’s determine the velocity of car 2 by applying conservation of 

momentum. 

  

Δpx = p fx − pix = 0

∴ pix = p fx → m1vi1 + m2v21 = m1v1 f + m2v2 f

v2 f =
m1vi1 + m2v21 − m1v1 f

m2

=
1200kg × 25 m

s( ) + 9000kg × 20 m
s( )− 1200kg ×18 m

s( )
9000kg

= 20.9 m
s

 

 
 
 
 
 
 
 
 
 

 
If this is an inelastic collision then the change in kinetic energy should be zero.  To see 

whether the change in kinetic energy is zero or not, calculate the initial and final kinetics 

energies before and after the collision.  The initial kinetic energy is 

  Ki =
1
2 m1v1i

2 + 1
2 m2v2i

2 = 1
2 ×1200kg × 25 m

s( )2
+ 1

2 × 9000kg × 20 m
s( )2

= 2.18×106 J , while the final 

kinetic energy, 

  
K f =

1
2 m1v1 f

2 + 1
2 m2v2 f

2 = 1
2 ×1200kg × 18 m

s( )2
+ 1

2 × 9000kg × 20.9 m
s( )2

= 2.16×105 J .  The 

change in kinetic energy is 
  
ΔK = K f − Ki = 2.18− 2.16( )×106 J = 20000J is lost to the 

collision.  This is an inelastic collision, but not by that much. 

	
Elastic Collisions 

	

Elastic collisions conserve both momentum and kinetic energy.  For macroscopically sized 

objects, completely elastic collisions are an approximation.  Consider Figure 7 below in which 

mass   m1 is moving to the right at an initial speed   v1i , while mass   m2 , located to the right of 

m1 m2 

vi1 v2i  

Figure 6:  Mass m1 moves to the right at an initial velocity v1i and collides with 
mass m2 moving to the right with velocity v2i.  After the collision, masses m1 and m2 
move off separately with final velocities v1f and v2f.  

m2 m1 

v2f v1f 



mass   m1 , is initially at rest.  Mass   m1 collides elastically with mass   m2 and we would like to 

calculate the final velocities of each of the masses after the collision,   
v1 f and   

v2 f .  Assuming 

that no external forces act during the collision, we apply conservation of momentum and 

kinetic energy to determine the two unknown velocities. 

	
	
	
	

Here we assume that both masses are moving to the right after the collision.  In 

particular, mass   m2 will most likely move to the right after the collision while mass 

  m1 may move to the right or it could move to the left.  We’ll determine the actual 

directions by solving the equations for momentum and kinetic energy.  Applying 

conservation of momentum and kinetic energy we get 

   

Δpsystem = 0→ pi,system = p f ,system → m1v1i = m1v1 f + m2v2 f

ΔK = 0→ Ki,system = K f ,system → 1
2 m1v1i

2 = 1
2 m1v1 f

2 + 1
2 m2v2 f

2
 

 
We have two equations and two unknowns.  From the equation for momentum, we 

solve for the velocity of mass   m2 after the collision   
v2 f and substitute this into the equation 

for kinetic energy.   Thus 
  
v2 f =

m1

m2

v1i − v1 f( ) and 
  

1
2 m1v1i

2 = 1
2 m1v1 f

2 + 1
2 m2

m
1

2

m
2

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

v1i − v1 f( )2
.  

m1 m2 

vi1 v2i = 0 

Figure 7:  Mass m1 moves to the right at an initial velocity v1i and collides with 
mass m2 at rest.  After the collision, masses m1 and m2 move off separately with 
final velocities v1f and v2f.  

m2 m1 

v2f v1f 



After some algebra we can determine expressions for the final velocities of mass   m1 and   m2

after the collision.  We find 

  

v1 f =
m1 − m2

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i (5a)

v2 f =
2m1

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i (5b)

	

	
Let’s check some limiting cases of the masses to see if equations 5a and 5b seem 

reasonable.  Suppose that    m1≪ m2 .  Equations (5a) and (5b) become 

  
v1 f =

m1 − m2

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i ~ −v1i and 

  
v2 f =

2m1

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i ~ 0 respectively.  Here the lighter 

mass   m1 bounces off of the heavier mass   m2 in the opposite direction with very little 

loss in speed and mass   m2 remains stationary.  If    m1≫ m2 , equations (5a) and (5b) 

become 
  
v1 f =

m1 − m2

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i ~ v1i and 

  
v2 f =

2m1

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i ~ 2v1i .  Here the heavier 

mass   m1 keeps going in the same direction with little loss of speed while the lighter 

mass   m2 gets a large kick in speed.  If the two masses are approximately equal 

  m1 ~ m2 , equations (5a) and (5b) become 
  
v1 f =

m1 − m2

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i ~ 0 and 

  
v2 f =

2m1

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i ~ v1i .  Here the incident mass   m1 comes to rest and mass   m2

leaves with the speed of the incident mass.  Equations (5a) and (5b) therefore seem 

reasonable. 

	
Example 4:  Consider the frictionless track ABC as shown below in Figure 8.  A block 

of mass   m1 = 5kg is released from point A.  It makes a head-on collision at 
point B with a block of mass   m2 = 10kg , initially at rest.  What is the 



maximum height to which mass   m1 rises back up the track after the 
collision?  In addition, suppose that just past point C there is a rough 
region in which the coefficient of friction is  µ = 0.9 .  After how much 
distance would block come to rest? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution:  Assuming mass   m1 and the world are the system, energy is conserved.  

Applying conservation of energy between points A and B (just before   m1

collides with   m2 ) we have 

 
  

ΔE = ΔK1 + ΔUg1 + ΔUs = 0

→ 1
2 m1v1 f

2 − 0( ) + 0− m1gyi1( ) + 0− 0( ) = 0

v1 f = 2gy1i = 2× 9.8 m
s2 ×5m = 9.9 m

s
   

	
During the collision between blocks   m1 and   m2  at point B, total momentum 
of the system is conserved and if we model this as a completely elastic 
collision, kinetic energy is also conserved.  Applying conservation of 
momentum and kinetic energy during the collision we have 

 

   

Δpsystem = 0→ pi,system = p f ,system → m1v1i = m1v1 f + m2v2 f

ΔK = 0→ Ki,system = K f ,system → 1
2 m1v1i

2 = 1
2 m1v1 f

2 + 1
2 m2v2 f

2

  
The solutions are given by equations 5a and 5b.  We have 
 

  

v1 f =
m1 − m2

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i =

5kg −10kg
5kg +10kg

⎛
⎝⎜

⎞
⎠⎟
× 9.9 m

s = −3.3 m
s

v2 f =
2m1

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i =

2×5kg
5kg +10kg

⎛
⎝⎜

⎞
⎠⎟
× 9.9 m

s = 6.5 m
s

 

 

m1 

m2 

A 

B C 
Figure 8:  Two masses on a frictionless track. 



To determine the height mass   m1 rises back up the track after the collision 
we apply conservation of energy and we have 

  

ΔE = ΔK1 + ΔUg1 + ΔUs = 0

→ 0− 1
2 m1v1i

2( ) + m1gy f 1 − 0( ) + 0− 0( ) = 0

y f 1 =
v1i

2

2g
=

−3.3 m
s( )2

2× 9.8 m
s2

= 0.56m
 

 
Mass   m2 moves to the right after the collision and when it encounters the 
rough surface, friction does work on mass bringing it to rest.  The distance 
traveled by mass   m2 is given by 

	

  

Wfr = ΔK → FfrΔxcosθ = µFNΔxcosθ = 1
2 m2v2 f

2 − 1
2 m2v2i

2

Δx =
v2i

2

2µg
=

6.5 m
s( )2

2× 0.9× 9.8 m
s2

= 2.4m
	

 
Collisions in two-dimensions 

 
The development of equations (1) – (4) apply whether the motion is in one or 

more than one dimension.  Consider the arrangement of masses shown in Figure 9.  

Let mass   m1 be incident along the x-axis with velocity   v1i  and let mass   m1 make a 

glancing collision with mass   m2 initially at rest.  Take the origin of the coordinate 

system be at mass   m2 .  After the collision mass   m1 scatters at an angle θ measured 

with respect to the x-axis while mass   m2 scatters at angle φ , also measured with 

respect to the x-axis.   

 

 

 

 

 

ϕ	

m1 

m1 

m2 

m2 x 

y 

θ	

Figure 9:  Two masses undergo a glancing collision in two-dimensions. 

v1i 

v1f 

v2f 



 

We can see where mass   m1 goes after the collision, so we assume that we 

know of can measure θ . We would like to calculate the velocities of each of the 

masses after the collision (  
v1 f and   

v2 f ) and the scattering angle of mass   m2 , φ .  

Assume the collision is elastic and we conserve momentum in the x- and y-directions 

as well as kinetic energy.   Conservation of momentum horizontally and vertically 

gives us 

  

x : m1v1i = m1v1 f cosθ + m2v2 f cosφ (6a)

y : 0 = m1v1 f sinθ − m2v2 f sinφ (6b)
 

 
while conservation of kinetic energy gives 

 

  
1
2 m1v1i

2 = 1
2 m1v1 f

2 + 1
2 m2v2 f

2 (7) . 
 

In theory the above three equations (6a), (6b), and (7) are solvable for the 

three unknowns that we have.  However, the algebra can be challenging.  Let’s do 

this by using some numbers.  First, let   m1 = m2 = m and   v1i = 3 m
s .  What are the final 

velocities of each mass after the collision and at what angle φ does mass   m2 scatter if 

mass   m1 scatters at  θ = 350 ?  Conservation of momentum horizontally and vertically 

becomes 

  

x : v1i = v1 f cosθ + v2 f cosφ

y : 0 = v1 f sinθ − v2 f sinφ
 

 
and conservation of kinetic energy is given as 

 

  
v1i

2 = v1 f
2 + v2 f

2 . 
 

To solve we first square the x- and y-momentum equations, add the results together 

and then use conservation of kinetic energy. 



 

  

x : v1i
2 = v1 f

2 cos2θ + v2 f
2 cos2φ + 2v1 f v2 f cosθ cosφ

y : 0 = v1 f
2 sin2θ + v2 f

2 sin2φ − 2v1 f v2 f sinθ sinφ

→ v1i
2 = v1 f

2 cos2θ + sin2θ( ) + v2 f
2 cos2φ + sin2φ( ) + 2v1 f v2 f cosθ cosφ − sinθ sinφ( )

 

 
Using conservation of energy we get, noting that  sin

2α + cos2α = 1  
 

  
v1i

2 = v1 f
2 + v2 f

2 = v1 f
2 + v2 f

2 + 2v1 f v2 f cosθ cosφ − sinθ sinφ( ) . 
 

The expression in parentheses is a trigonometric identity, 

 cosθ cosφ − sinθ sinφ = cos θ +φ( ) . 
 

Now we can determine the scattering angle φ of   m2 .  We have, assuming that 

  
v1 f ≠ 0 and  

v2 f ≠ 0  
 

  

0 = 2v1 f v2 f cos θ +φ( )→ cos θ +φ( ) = 0→θ +φ = 350 +φ = 900

∴φ = 550
 

 
Here we note that IF and ONLY IF   m1 = m2 the masses scatter at right angles 

to each other.  If the masses are not equal then we have to go back equations (6a), 

(6b), and (7) and solve the problem with the unequal masses.  Now that we have the 

scattering angle we can use equations (6a) and (6b) to solve for the final speeds of 

each mass after the collision.  From equation (6b) we solve, say, for   
v2 f , and get 

  
v2 f =

sinθ
sinφ

⎛
⎝⎜

⎞
⎠⎟

v1 f =
sin35
sin55

⎛
⎝⎜

⎞
⎠⎟

v1 f = 0.7v1 f .  Inserting this into equation (6a) we can 

determine   
v1 f .  We have 

  
v1i = v1 f cos35+ 0.7v1 f( )cos55= 1.22v1 f → v1 f =

v1i

1.22
=

3 m
s

1.22
= 2.46 m

s .  And lastly 

  
v2 f = 0.7v1 f = 0.7 × 2.46 m

s = 1.72 m
s . 



Of course we’ve also looked at inelastic collisions in which momentum is 

conserved, but not kinetic energy.  How about we look at an inelastic collision in two 

dimensions.  Consider the traffic accident shown in Figure 10 below in which two 

vehicles, a car (in blue) and a van (in green) approach an intersection.  Both fail to 

stop and the cars collide, stick together and move off with a common final velocity.  

What is the final velocity of the cars after the collision? 

 

 

 

 

 

 

 

 

Let’s take up the page as the positive y-direction and to the right as the 

positive x-direction.  Applying conservation of momentum horizontally and 

vertically we have 

  

x : mcvic = mc + mv( )V cosθ

y : mvviv = mc + mv( )V sinθ
. 

Dividing these two expressions will allow us to determine the angle θ that the 

velocity vector makes with the horizontal.  Once we know the angle we can use 

either momentum equation to determine the final speed  V of the car and van after the 

collision.  The angle is determined as 

x 

y 

mc 

mc 

mv 

mv 

vic 

viv 

V 

θ 

Figure 10:  Inelastic collision of two vehicles at an intersection.  The 
vehicles move off together after the collision. 



  

mvviv

mcvic

=
mc + mv( )V sinθ
mc + mv( )V cosθ

= tanθ

tanθ =
mvviv

mcvic

=
2500kg × 20 m

s

1500kg × 25 m
s

= 1.33→θ = 53.10

 

The final speed of the car and van after the collision is 

  
mcvic = mc + mv( )V cosθ →V =

mcvic

mc + mv( )cosθ
=

1500kg × 25 m
s

1500kg + 2500kg( )cos53.1
= 15.6 m

s

 

Summary 

We’ve looked at momentum and its conservation in one and two dimension.  

We’ve also looked at two types of collisions between objects, namely inelastic and 

elastic.  Elastic collisions conserve momentum and kinetic energy.  Inelastic 

collisions conserve momentum only, with some of the energy of motion being lost to 

sources like heat, light, sound and deforming the objects.  Both collisions conserve 

total energy.  Unless explicitly stated, in order to truly tell if a collision is elastic or 

not, one needs to calculate the change in kinetic energy.  If the change is zero, the 

collision is elastic.  If the change is not zero then the collision is inelastic. 

Let’s try a few more examples for practice. 

 

Example 5:  Rutherford Backscattering Spectroscopy 

Alpha particles are routinely accelerated using a particle accelerator and are 
directed with the use of magnets into targets composed of various elements. 
A famous experiment called Rutherford’s experiment has a beam of alpha 
particles incident on a target of gold. An alpha particle (a helium nucleus) is 
accelerated to a certain speed and makes an elastic head-on collision with a 
stationary gold nucleus. What percentage of its original kinetic energy is 
transferred to the gold nucleus? 

 
 
 
 



Solution:		 	
The percent kinetic energy lost is given by  
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We need to determine both the final speed of the alpha particle and the gold 
nucleus after the collision.  To do this we apply conservation of momentum 
and kinetic energy.  From conservation of momentum we have

AufAufi vmvmvm ,,, += αααα and from conservation of kinetic energy
2
,2

12
,2

12
,2

1
AufAufi vmvmvm += αααα .   

 
Here we have two equations and two unknowns.  From momentum we solve 

for the final velocity of the alpha particle and obtain Auf
Au

if v
m
mvv ,,,

α
αα −= .  

We square this result and substitute into the equation for kinetic energy we 
obtain a quadratic equation in the final velocity of the gold nucleus.  The 

quadratic equation is ( ) AufiAuAufAu
Au vvmvm
m
m

,,
2
,

2

20 α
α

−⎟⎟⎠

⎞
⎜⎜⎝

⎛
+= .  Using the 

quadratic formula we find the solutions
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the zero speed solution.  Substituting this result into our equation for the 
final speed of the alpha particle and we calculate the final speed to be

α
α

α

α
αα ,,,, i

Au

Au
Auf

Au
if v

mm
mmv

m
mvv ⎟⎟⎠

⎞
⎜⎜⎝

⎛
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−=−= .  So the percent of the initial kinetic 

energy lost is 
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Using the mass of an alpha particle of 4u and of gold 197u, we have 
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Example 6:  Ice Hockey 
 

A hockey puck traveling at   1.2 m
s  collides with a second stationary equal mass puck 

and, after the collision, moves with a speed of   0.8 m
s  deflected by an angle of  300 . 

What is the velocity (magnitude and direction) of the other puck after the collision?  
In addition, what is the fraction of the initial energy lost in the collision? 

 
Solution:  Using a standard Cartesian coordinate system we apply conservation of 

momentum in the horizontal and vertical directions and we have
φθφθ coscoscoscos 211211 vvvmvmvmvpp ixixfxix +=→+=→= and

φθφθ sinsin0sinsin0 2121 vvmvmvpp fyiy −=→−=→= .   
 

Here we have two equations and two unknowns,   v2  and φ .  Inserting the 
numbers from the problem we have for the horizontal and vertical directions

51.0coscoscos 2211 =→+= φφθ vvvv ix and 4.0sin2 =φv .   
 
Dividing these two expressions we solve for the unknown angle and find

( ) o1.387843.0tan7843.0
51.0
4.0tan 1 ==→== −φφ .  Therefore the unknown 

velocity is s
mvvv 65.04.01.38sinsin 222 =→==φ .   

 
The fraction of the initial energy lost is	
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Example 7:  A bullet in a block on a horizontal surface 
 

A   10g  projectile is fired at   500 m
s into a   1kg block sitting on a 

frictionless horizontal surface. The projectile lodges in the center of 
the block, and both move off together. 

 
a. What is the final velocity of the block after the collision? 

 
b. The block slides along the frictionless surface some distance and 

then encounters a ramp, which slopes up at an angle of  600 . What 
distance does the block travel along the surface of the ramp before 
coming to a stop? 

 
c. If the coefficient of friction between the block and the ramp is  µ = 0.2 , 

how far does the block slide up the ramp before stopping? 
 
Solution:  

a. Assuming that the positive x-direction is to the right we apply conservation 
of momentum.  We find for the velocity after the collision 

( ) ( ) s
ms

m

blb

ib
blbibfxix kg

kg
mm
vm

VVmmvmpp 95.4
01.1
50001.0

=
×

=
+

=→+=→=

to the right. 
 

b. Define  d  as the distance the block slides along the ramp and  h  as the 
height the block rises above the horizontal, we have from the geometry 

θθ sinsin dh
d
h =→= .  Applying conservation of energy between the 

bottom of the ramp and where the block comes to rest we have 

  

ΔE = 0 = ΔUg + ΔKE = mgy f − mgyi( ) + 1
2 mv f

2 − 1
2 mvi

2( )
0 = mgh− 1

2 mvi
2 = mgd sinθ − 1

2 mvi
2

∴d =
vi

2

2g sinθ
=

4.95 m
s( )2

2× 9.8 m
s2 sin60

= 1.44m

 

c. In the presence of friction, energy is lost to heat between the surfaces.  To 
calculate the new distance we use 

( ) ( )
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Example 8:  Fireworks 
 

A rocket used for fireworks explodes just when it reaches its highest point in a 
vertical trajectory. It initially bursts into three fragments with masses of  m ,   3m , 
and   4m , each of these to explode slightly later. If the   4m  fragment falls 
vertically downward with an initial velocity of   8

m
s , and the   3m  fragment is 

ejected with a velocity of   10 m
s  at an angle of  300  above the horizontal, what is 

the velocity of the third fragment? 
 

Solution: At the highest point of the rocket’s motion, its velocity is zero.  Therefore the 
initial x- and initial y-momenta are both zero when the rocket explodes.  After 
the explosion we apply conservation of momentum in the vertical and horizontal 
directions.  Assuming that the piece of mass  m  has a momentum in the same 
quadrant as the   3m  piece.    

 
In the vertical direction ( ) ( ) φφ sin17sin30sin103840 vmvmm s

m
s
m =→++−= .   

 
In the horizontal direction we have

( ) φφ sin98.25cos30cos1030 vmvm s
m =−→+= .   

 
Here we have that the x- component of the velocity is negative, while the y-
component is positive, so the momentum vector lies in the 2nd quadrant, our 
guess was incorrect, but that’s ok.  Now we know.  Taking the ratio of these two 
equations produces an angle of  33.20 above the negative x-axis.  Then using any 
one of the above equations we find for the magnitude of the velocity to be   31 m

s . 
 

Example 9:  Proton scattering 
 

A proton moving with an initial velocity  vix  in the x-direction, as shown in Figure 
11, collides elastically with another proton that is initially at rest. If the two protons 
have equal speeds after the collision, what is the speed of each proton after the 
collision in terms of  vix , and what are the directions of the velocity vector after the 
collision? 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 11:  An incident proton scattering off a stationary proton. 
 



Solution:   We break up the momentum into x and y-components and use conservation of 
momentum in each direction.  We have in the x-direction

φθ coscos mvmvmvpp ixfxix +=→= , while in the y-direction 
φθφθφθ =→=→−=→= sinsinsinsin0 mvmvpp fyiy .   

 
Using the results from the vertical motion we rewrite the x-momentum as

φφθ cos2coscos vvvvix =+= .   
 
Next we use the kinetic energy to obtain an expression for  vix  in terms of v so that 
we can determine the unknown angle φ .  Conservation of energy gives

vvvvmvmvmvKEKE ixixixfi 22 222
2
12

2
12

2
1 =→=→+=→= .   

 

Therefore we have the magnitude of the velocity after the collision as
2
ixvv = .  And 

from the x-momentum we calculate the angle to be
o

ix vvv 45
2
2coscos22 =→=→== φφφ .  The angle of the velocity vector after 

the collision is  φ = θ = 450 . 
 


