Physics 110
Exam #2

November 1, 2019

Name

Please read and follow these instructions carefully:

Read all problems carefully before attempting to solve them.

Your work must be legible, and the organization clear.

You must show all work, including correct vector notation.

You will not receive full credit for correct answers without adequate explanations.
You will not receive full credit if incorrect work or explanations are mixed in with
correct work. So erase or cross out anything you don’t want graded.

Make explanations complete but brief. Do not write a lot of prose.

Include diagrams.

Show what goes into a calculation, not just the final number. For example

1= mifl = (5ke) x (22) = 1052

Give standard SI units with your results unless specifically asked for a certain unit.
Unless specifically asked to derive a result, you may start with the formulas given
on the formula sheet including equations corresponding to the fundamental
concepts.

Go for partial credit. If you cannot do some portion of a problem, invent a symbol
and/or value for the quantity you can’t calculate (explain that you are doing this),
and use it to do the rest of the problem.

All multiple choice questions are worth 3 points and each free-response part is
worth 9 points

Problem #1 /24
Problem #2 /24
Problem #3 /24

Total /72

1 affirm that I have carried out my academic endeavors with full academic honesty.




1.

Suppose that you are conducting an experiment on rotational motion Ly -

and that you have a uniform bar of mass M, = lkg and length

L, =30cm has two point masses (each of mass m=100g ) attached to

each end as shown as experiment A in the figure on the right. The
bar is attached to a rod of radius » = lcm around which a light string

radius r

is wound. The string passes over a massless pulley and a hanging Expesiment A

block of mass M, =4mis attached. The system is released from rest.

a.

Experiment A to
investigate rotational
motion.

From an examination of the forces and torques that act on the system, what is the
translational acceleration of the hanging mass M, = 4m after it has fallen through a
distance D =50cm ?
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b. Using energy methods, after the hanging mass M, has fallen through a distance D,

what is its translational speed?
=AK_+AK_+AU +AU =0
system T R g s

0=(4 M2 -0)+(L 10 -0)+(0- M,gD)
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0= 4 M2 43107 = MygD = H(4m)v? +4(3 M, 4 dmL3) ) (4m) gD

4mgD 4x0.1kg x9.84%0.5m
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c. When the hanging mass M, = 4mhas fallen through a distance D, the kinetic energy

at that instant, in the system is

1. greater than 4mgD .
@ equal to 4mgD .
AE=AK, +AK, +AU, =0— AK, +AK, =-AU =4mgD
3. less than 4mgD .
4. unable to be determined from the information given.

d. Suppose that instead of the situation in parts a, b and ¢ we have
the following experiment to investigate rotational motion. In
experiment B on the right, the uniform bar still has mass

M, =1kg and length L, =30cm but now each point mass
(m=100g) is attached to the end of the bar by a light string of
length /. Now, when the hanging mass M, = 4mhas fallen

through a distance D, the kinetic energy at that instant, in the
system is

1. greater than 4mgD .
2. equal to 4mgD .
less than 4mgD .

AE=AK, +AK,+AU, =0— AK, +AK, =-AU,, —AU

&My

4. unable to be determined from the information given.

g.m

radius r 5 |}

Experiment B

Experiment B used to
investigate rotational
motion.

=4mgD — AU,



2. A spring of unknown stiffness is compressed by an amount x =10cm from its
equilibrium position at which point mass m, = 3kg is placed. The system is released

from rest and when the spring reaches its equilibrium position the mass loses contact
with the spring. Assume that the horizontal surface is frictionless.

10cm

(VN

_m

a. Point mass m makes a head—on collision with an initially stationary point mass

m, = 4kg . After the collision the two masses move off together with a speed of
V' =22 What is the stiffness of the spring?

my, =(m1+m2)V—>vl =[

system
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= 66272

b. The percent of the initial kinetic energy lost to the collision between the two point
masses m, and m, is most likely given by

1. %= ﬁ—ljxloo.
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5. None of the above will give the correct expression for the energy lost to the
collision.



C.

Suppose that after the collision the system of point masses m, and m, slide up a
S5cm hill tall and then around the loop-the-loop with diameter 14cm . What is the
magnitude of the reaction force of the tract on the masses m, and m, at the top of
the loop-the-loop? Assume that all of the surfaces are frictionless.
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=AK, +AK, +AU_ +AU =0

system
0= (%(ml + mz)vzzop - %(ml + m2)vlfottom)+ ((ml + mz)gyzop - 0)

Viiom ™ 2&V0p = \/(2%)2 ~2x9.82x0.19m =0.522
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F,=(m, +m2)(g—%J = (3kg +4kg) 9.8§—M

0.07m

=41.2N

Suppose that instead of rising up the Scm tall hill and then around the loop-the-loop,
the masses m, and m, instead fell down a hill of the same height and then around
the loop-the-loop track of the same diameter. In this case the magnitude of the
reaction force of the track on masses m, and m, would be

1. less than the magnitude found in part c.
2. equal to the magnitude found in part c.
greater than the magnitude found in part c.
. dependent on the stiffness of the spring
5. unable to be determined from the information given.



3. Hip problems, like lower backaches and pain, are often associated with an underlying
medical condition such as rheumatoid arthritis, osteoarthritis, tendonitis, pelvic floor
issues and being overweight. As with the back, forces on the hip from the legs can be
several times that of a person’s body weight. To see how large these forces can be
consider the model of the human leg as shown below which illustrates several forces at
play as you, say stand on one foot, or as you walk slowly. The figure on the left,
below, illustrates the forces on the leg and hip while the figure on the right, below, is a
cartoon diagram illustrating the various forces and distances from the pivot involved.

F, is the reaction force from the floor with supports the body’s weight F, and F,, is

the weight of the leg, assumed uniform and given as 0.16F, . F, is the force due to

the muscles in the hip, called the abductor muscles. The hip abductor muscles are
responsible for moving the leg away from the body and help rotate the leg at the hip
joint. The hip abductors are necessary for stability when walking or standing on one

leg. Lastly, F, is the reaction force on the leg from the hip itself and this is what we’d
like to calculate. Let@=70°.
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a. In the diagram on the right above on the previous page, the green lines represent the
radial distances from the pivot to the each applied force and the angles between the
radial distances and the applied forces are given. Using this information, what are
the expressions for the sum of the forces in the horizontal and vertical directions

and the sum of the torques about the pivot? Let8 = 70" and take clockwise as the
positive direction for the torque.
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— F,sing=F, =F, cosO

> F,:F,sinf—F,cos¢p—F, +F, =ma, =0 Fycos¢p=F, =F, sin0—0.16F,, +F,,
— Fycosp=F, =F, sin0—-0.16F, +F, =F, sin0+0.84F,,

Z‘L’ +r, F, sin@—r, Fsmy+r 5, ,sinfi=1 oa=0

cyvtem

—0= (0.07m>< sin70) F,, —(0.108m)FWB +(0.032mx0.16) F,,
F, =156F,,

S Fosing=F, =F, cos@=1.56F, cos70=0.534F,,
S Fycosp=F, =F, sin0+0.84F, =156F, sin70+0.84F, =2.31F,

From the geometry of the system we can get:

1 :
siny = 0.108m —0.108m=r, siny
. v
sinf3 = 0.032m —0.032m=r, smﬁ

FVVL

b. What is the magnitude and direction of F), in terms of the weight of the body, F;

Fo=\F.+F’ @q):tan—l(i—:)

\/0534F +(231F,,) @¢=tan” (S5
F,=237F, @¢—13°

If we define A to be the angle with respect to the horizontal, then A =90—¢ =77°
and since this is greater than 6, the system is stable against rotation and you won’t
fall over sideways.



C.

Suppose that you have the following system in which a
uniform beam is hinged at one end and held in position
by a cable as shown on the right. The tension in the
cable

must be at least half of the weight of the beam, no matter what angle the cable
makes with the horizontal.
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2. could be less than the beam’s weight for some angles the cable makes with the

horizontal.

3. will be half of the beam’s weight for all angles the cable makes with the
horizontal.

4. will be equal to the beam’s weight for all angles the cable makes with the
horizontal.

5. cannot be determined for this situation.

Two children, Alex and Samantha, are sitting on a merry-go-round. Alex is at a
point halfway between the center of the merry-go-round and the outer edge, while
Sam is sitting on the outer edge. The merry-go-round makes one revolution every
2s. Alex’s linear velocity is

1. one quarter of Samantha’s linear velocity.
half of Samantha’s linear velocity.

v, Vg r, 0.5R Vg
VErO—>0=—+=—=—>v =24y = vy =—".
reo T rg R 2

3. the same as Samantha’s linear velocity.
4. twice that of Samantha’s linear velocity.
5. four times that of Samantha’s linear velocity.



Equations of Motion

X, =X, +v t+iat
displacement: '

- 1442
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Ve=v,tat
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velocity:

V=V, T at

vi =v’ +2a Ax
L = Vi v
time-independent:

2 _ 2
Vi =V, +2ayAy

Vectors

magnitude of a vector: v= |17‘ =, [vxz + vzv

v
directionofa vector: ¢ = tan™ [—yJ
v

x

Linear Momentum/Forces
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Rotational Motion
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Physics 110 Formulas

Uniform Circular Motion Geometry /Algebra
v? v?
F =ma, = mT; 4= Circles  Triangles ~ Spheres
2rr C=2nr Azébh A=4m?
v=—-
T A=m’ V=im’
F =g Quadratic equation : ax”* +bx +c =0,
G 2
: . . —b+ b’ —4ac
whose solutions are given by : x :27
a
Useful Constants
g=987. G=6067x107" ¥/,
N, = 6.02x107 womy . [, =138x107 %
o=567x10"°Y . . v, =343
Work/Energy Heat
5
2 T, =31, -32]
=1
Ky =qmv T, =2T.+32
K, =1lo’

K : Lnew = Lold (1 + (XAT)
v,= mgh Anen - a[d (1 + 2(XAT)
US - %kxz Vneu - old (1+ ﬁAT) : ﬁ = 3a
W, = FAxCosf = AK, PV =Nk, T
W,=10=AK, 3k, T=1
W, =W, +W,=AK +AK, AQ = mcAT
AK,+AK, +AU +AU = AEmmmzo _AQ kA

cT L T
AK, +AK, +AU, +AU =AE =W, =-F Ax At
AQ

Fluids
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Simple Harmonic Motion/Waves
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Location Moment of
Object of axis inertia
Axis
(a) Thin hoop, Through
radius R center % MR?
Axis
(b)  Thin hoop, Through
radius R central R 1 |
width w diameter EMRz T Esz
Axis
(c) Solid cylinder, Through 1
radius R center .' EMRz
Axis
(d) Hollow cylinder, Through | e
inner radius R center R, M+ R)
outer radius R,
Axis
(e) Uniform sphere, Through
radius R ;
: Axis
(f) Long uniform rod, Through Q:!:) 1 ye
length ¢ center ) 12
Axis
(g) Long uniform rod, Through = 1,
length ¢ end —p—> 3
Axis
(h)  Rectangular Through S L v + w2)
thin plate, center ( /% 12

length £, width w
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