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Please read and follow these instructions carefully: 
 

• Read all problems carefully before attempting to solve them. 
• Your work must be legible, and the organization clear. 
• You must show all work, including correct vector notation. 
• You will not receive full credit for correct answers without adequate explanations. 
• You will not receive full credit if incorrect work or explanations are mixed in with 

correct work.  So erase or cross out anything you don’t want graded. 
• Make explanations complete but brief.  Do not write a lot of prose. 
• Include diagrams. 
• Show what goes into a calculation, not just the final number.  For example

  

� 

! p ≈ m " v = 5kg( ) × 2 m
s( ) =10 kg⋅m

s  
• Give standard SI units with your results unless specifically asked for a certain unit. 
• Unless specifically asked to derive a result, you may start with the formulas given 

on the formula sheet including equations corresponding to the fundamental 
concepts. 

• Go for partial credit.  If you cannot do some portion of a problem, invent a symbol 
and/or value for the quantity you can’t calculate (explain that you are doing this), 
and use it to do the rest of the problem. 

• All multiple choice questions are worth 3 points and each free-response part is 
worth 9 points 

 
 
 
 
 
 
 

 
I affirm that I have carried out my academic endeavors with full academic honesty. 

 
__________________________________________ 

Problem #1 /24 
Problem #2 /24 
Problem #3 /24 

Total /72 



1.   Suppose that you are conducting an experiment on rotational motion 
and that you have a uniform bar of mass   Mb = 1kg and length 

  Lb = 30cm has two point masses (each of mass   m = 100g ) attached to 
each end as shown as experiment A in the figure on the right.  The 
bar is attached to a rod of radius   r = 1cm around which a light string 
is wound.   The string passes over a massless pulley and a hanging 
block of mass  Mh = 4m is attached.  The system is released from rest.  

 
 

a. From an examination of the forces and torques that act on the system, what is the 
translational acceleration of the hanging mass  Mh = 4m  after it has fallen through a 
distance  D = 50cm ? 
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Experiment A to 
investigate rotational 
motion. 

Lb  
	



b. Using energy methods, after the hanging mass Mh has fallen through a distance D , 
what is its translational speed? 
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c. When the hanging mass  Mh = 4mhas fallen through a distance D , the kinetic energy 
at that instant, in the system is  

 
1. greater than   4mgD . 
2. equal to   4mgD . 

  
ΔE = ΔKT + ΔKR + ΔUg = 0→ΔKT + ΔKR = −ΔUg = 4mgD  

3. less than   4mgD . 
4. unable to be determined from the information given. 

 
 

d. Suppose that instead of the situation in parts a, b and c we have 
the following experiment to investigate rotational motion.  In 
experiment B on the right, the uniform bar still has mass 

  Mb = 1kg and length   Lb = 30cm  but now each point mass         
(  m = 100g ) is attached to the end of the bar by a light string of 
length  l .  Now, when the hanging mass  Mh = 4m has fallen 
through a distance  D , the kinetic energy at that instant, in the 
system is  

	
1. greater than   4mgD . 
2. equal to   4mgD . 
3. less than   4mgD .

  
ΔE = ΔKT + ΔKR + ΔUg = 0→ΔKT + ΔKR = −ΔUg ,MH

− ΔUg ,m = 4mgD − ΔUg ,m  

4. unable to be determined from the information given. 
 
 
 
 
 
 
 

Experiment B used to 
investigate rotational 
motion. 

Lb 



2. A spring of unknown stiffness is compressed by an amount   x = 10cm  from its 
equilibrium position at which point mass   m1 = 3kg  is placed.  The system is released 
from rest and when the spring reaches its equilibrium position the mass loses contact 
with the spring. Assume that the horizontal surface is frictionless. 

 
 
 
 

a.   Point mass   m1 makes a head–on collision with an initially stationary point mass 

  m2 = 4kg .  After the collision the two masses move off together with a speed of 

  V = 2 m
s .  What is the stiffness of the spring? 
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b.  The percent of the initial kinetic energy lost to the collision between the two point 
masses   m1 and   m2 is most likely given by  
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5. None of the above will give the correct expression for the energy lost to the 
collision. 
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c.   Suppose that after the collision the system of point masses   m1 and   m2 slide up a 
  5cm hill tall and then around the loop-the-loop with diameter   14cm .  What is the 
magnitude of the reaction force of the tract on the masses   m1 and   m2  at the top of 
the loop-the-loop? Assume that all of the surfaces are frictionless.  
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d.   Suppose that instead of rising up the   5cm tall hill and then around the loop-the-loop, 

the masses   m1 and   m2 instead fell down a hill of the same height and then around 
the loop-the-loop track of the same diameter.  In this case the magnitude of the 
reaction force of the track on masses   m1 and   m2  would be  

 
1. less than the magnitude found in part c. 
2. equal to the magnitude found in part c. 
3. greater than the magnitude found in part c.

	

 
4. dependent on the stiffness of the spring 
5. unable to be determined from the information given.	  

 
 

5cm 

14cm 

m1 m2 



3.   Hip problems, like lower backaches and pain, are often associated with an underlying 
medical condition such as rheumatoid arthritis, osteoarthritis, tendonitis, pelvic floor 
issues and being overweight.  As with the back, forces on the hip from the legs can be 
several times that of a person’s body weight.  To see how large these forces can be 
consider the model of the human leg as shown below which illustrates several forces at 
play as you, say stand on one foot, or as you walk slowly.  The figure on the left, 
below, illustrates the forces on the leg and hip while the figure on the right, below, is a 
cartoon diagram illustrating the various forces and distances from the pivot involved.  

 

 FN is the reaction force from the floor with supports the body’s weight  FWB  and  FWL is 
the weight of the leg, assumed uniform and given as   0.16FWB .   FM is the force  due to 
the muscles in the hip, called the abductor muscles.  The hip abductor muscles are 
responsible for moving the leg away from the body and help rotate the leg at the hip 
joint. The hip abductors are necessary for stability when walking or standing on one 
leg.  Lastly, FR is the reaction force on the leg from the hip itself and this is what we’d 

like to calculate.  Let θ = 700 .  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure adapted from Physics of the Human Body by Herman Irving 

pivot 

γ 



a. In the diagram on the right above on the previous page, the green lines represent the 
radial distances from the pivot to the each applied force and the angles between the 
radial distances and the applied forces are given.  Using this information, what are 
the expressions for the sum of the forces in the horizontal and vertical directions 
and the sum of the torques about the pivot?  Let θ = 700 and take clockwise as the 
positive direction for the torque. 

 

  

Fx : FM cosθ − FR sinφ = max = 0∑
→ FR sinφ = FRx = FM cosθ

Fy : FM sinθ − FR cosφ − FWL + FN = may = 0∑ → FR cosφ = FRy = FM sinθ − 0.16FWB + FWB

→ FR cosφ = FRy = FM sinθ − 0.16FWB + FWB = FM sinθ + 0.84FWB

τ : + rFM
FM sinθ − rFN

FN sinγ + rFWL
FWL sinβ = Isystemα = 0∑

→ 0 = 0.07m× sin70( )FM − 0.108m( )FWB + 0.032m× 0.16( )FWB
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∴FR cosφ = FRy = FM sinθ + 0.84FWB = 1.56FWB sin70+ 0.84FWB = 2.31FWB

 
 From the geometry of the system we can get: 
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b. What is the magnitude and direction of  FR in terms of the weight of the body,  FWB ? 
 

  

FR = FRx
2 + FRy

2 @φ = tan−1 FRy
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+ 2.31FWB( )2
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( )
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If we define Δ to be the angle with respect to the horizontal, then  Δ = 90−φ = 770

and since this is greater than θ , the system is stable against rotation and you won’t 
fall over sideways. 

 



c. Suppose that you have the following system in which a 
uniform beam is hinged at one end and held in position 
by a cable as shown on the right.  The tension in the 
cable 
 
 
 
1. must be at least half of the weight of the beam, no matter what angle the cable 

makes with the horizontal.
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L
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Mbeamg
2sinθ

=
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2. could be less than the beam’s weight for some angles the cable makes with the 
horizontal. 

3. will be half of the beam’s weight for all angles the cable makes with the 
horizontal. 

4. will be equal to the beam’s weight for all angles the cable makes with the 
horizontal. 

5. cannot be determined for this situation. 
 
 
 
 
 
 

d. Two children, Alex and Samantha, are sitting on a merry-go-round.  Alex is at a 
point halfway between the center of the merry-go-round and the outer edge, while 
Sam is sitting on the outer edge.  The merry-go-round makes one revolution every 
  2s .  Alex’s linear velocity is 
 
1. one quarter of Samantha’s linear velocity. 
2. half of Samantha’s linear velocity.
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vA

rA
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vS

rS

→ vA =
rA
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vS =
0.5R

R
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vS

2
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3. the same as Samantha’s linear velocity. 
4. twice that of Samantha’s linear velocity. 
5. four times that of Samantha’s linear velocity. 
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Physics 110 Formulas 
 
 
Equations of Motion   Uniform Circular Motion Geometry /Algebra 

  

displacement:
x f = xi + vixt +
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time-independent:
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2 = vix
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Fr = mar = m v2

r
; ar =

v2

r

v = 2πr
T

FG = G
m1m2

r 2

 

� 

Circles Triangles Spheres

C = 2πr A = 1
2 bh A = 4πr2

A = πr2 V = 4
3 πr

3

Quadratic equation : ax 2 + bx + c = 0,

whose solutions are given by : x = −b ± b2 − 4ac
2a

  

 
 
 
Vectors      Useful Constants 

   

magnitude of a vector: v = !v = vx
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y

directionof a vector: φ = tan−1
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Linear Momentum/Forces      Work/Energy    Heat 

   

!p = m!v KT = 1
2 mv2

!
p f =

!
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F ⋅dt KR = 1

2 Iω 2
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WR = τθ = ΔKR
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ΔKR + ΔKT + ΔUg + ΔUS = ΔEsystem = 0
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2 kBT = 1

2mv
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ΔQ = mcΔT
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Rotational Motion                 Fluids    Simple Harmonic Motion/Waves 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
Sound 
 
 
 



 


