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Name___________________________________ 
 

 
Please read and follow these instructions carefully: 
 

• Read all problems carefully before attempting to solve them. 
• Your work must be legible, and the organization clear. 
• You must show all work, including correct vector notation. 
• You will not receive full credit for correct answers without adequate explanations. 
• You will not receive full credit if incorrect work or explanations are mixed in with 

correct work.  So erase or cross out anything you don’t want graded. 
• Make explanations complete but brief.  Do not write a lot of prose. 
• Include diagrams. 
• Show what goes into a calculation, not just the final number.  For example

  

€ 

 p ≈ m  v = 5kg( ) × 2 m
s( ) =10 kg⋅m

s  
• Give standard SI units with your results unless specifically asked for a certain 

unit. 
• Unless specifically asked to derive a result, you may start with the formulas given 

on the formula sheet including equations corresponding to the fundamental 
concepts. 

• Go for partial credit.  If you cannot do some portion of a problem, invent a 
symbol and/or value for the quantity you can’t calculate (explain that you are 
doing this), and use it to do the rest of the problem. 

• All multiple choice questions are worth 4 points and each free-response part is 
worth 8 points 

 
 
 
 
 
 
 

 
I affirm that I have carried out my academic endeavors with full academic honesty. 

 
__________________________________________ 

 

Problem #1 /20 
Problem #2 /28 
Problem #3 /24 

Total /72 



1. Rock-climbing is a fun but perhaps very dangerous sport.  
Suppose that the lead climber (the leader) has an accident and 
falls from a height 

€ 

H  above a runner (a fixed metal loop through 
which the rope runs) while a second (lower) climber holds fast to 
limit the fall and does not move.  When the falling leader reaches 
distance 

€ 

H  below the runner, the rope begins to stretch.  The 
stretch is a maximum when the leader has fallen an additional 
distance 

€ 

d  and has come to a stop.  The force on the rope is then 
a maximum at magnitude 

€ 

Fmax .  This is the dangerous part of the 
fall because 

€ 

Fmax  could be large enough to snap the rope.   For 
any particular rope, the spring constant 

€ 

k  depends on the length 
of rope 

€ 

L  and on the elasticity of the rope material to stretch 

€ 

erope , considered to be constant.  Thus for this example we can write 

€ 

k =
erope
L

.   

 
a.   What is the maximum stretch of the rope, if 

€ 

k =1500 N
m  for this rope? 

 
 

By conservation of energy we have, assuming that 

€ 

ΔKE = 0  is zero because the 
leader starts and ends at rest and the zero of the gravitational potential energy is at 
the runner.  Thus we have 

€ 

ΔE = 0 = ΔKE + ΔUg + ΔUs = mgy f −mgyi( ) + 1
2 kx f

2 − 1
2 kxi

2( ) = −mg H + d( ) −mgH( ) + 1
2 kd

2 − 0( )
→−2mgH −mgd + 1

2 kd
2 = 0

d =
mg± mg( )2 + 4mgkH

k
=
80kg × 9.8 m

s2( ) ± 80kg × 9.8 m
s2( )2 + 4 80kg× 9.8 m

s2( ) ×1500 × 3m
1500 N

m

=
3m
−2m
 
 
 

 
Therefore the maximum stretch is 

€ 

d = 3m . 
 
 
 
 

b.   What is the magnitude of the maximum force? 
 
 The maximum magnitude of the force is given by Hooke’s law: 

€ 

Fmax = kd = mg + mg( )2 + 4mgkH =1500 N
m × 3m = 4500N  

 
 
 
 
 
 
 
 

Halliday, Resnick, & Walker, Fundamentals of 
Physics, 7th Ed. 



c.  Suppose that you have the situation of a short fall.  Compared to 
the maximum force for the longer fall (

€ 

Fmax,long  ), the maximum 
force for the short fall (

€ 

Fmax,short ) is 
 
 1. greater than 

€ 

Fmax,long . 
 2. less than 

€ 

Fmax,long . 
 3. equal to 

€ 

Fmax,long . 
4. unable to be determined from the information given. 

  
 
 
 Since 

€ 

Fmax = kd = mg + mg( )2 + 4mgkH , we have as 

€ 

L  decreases in the 
expression for 

€ 

k , 

€ 

k  increases as does 

€ 

d.  Thus the maximum force increases 
since both 

€ 

d and 

€ 

k .  You can also see this using the numbers in the problem and 
the result of part b. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Halliday, Resnick, & Walker, Fundamentals of 
Physics, 7th Ed. 



 
2.  When one thinks of bones in the human body, one doesn’t normally consider bone as 

a compressible material, but human bones compress by different amounts when 
various loads (forces) are applied.  Consider for example, an average adult male 
femur or thighbone.  The femur has an average length of approximately 

€ 

L = 48cm  
and a circular cross-sectional area with a diameter of 

€ 

d = 2.3cm .  When a force is 
applied over the cross-sectional area of the bone, a stress on the bone is produced and 

the stress is given by 

€ 

stress =
F
A

, where 

€ 

A  is the cross-sectional area of the bone.  

This stress causes the bone to strain under the load and the strain changes the length 

€ 

ΔLof the bone of length 

€ 

L .  The strain is defined as 

€ 

strain =
ΔL
L

.  We’ve used 

Hooke’s law do describe elastic materials, or materials that deform under an applied 
force and when the applied force is removed return to their original shape.  The 
generalized form of Hooke’s law is given as 

€ 

Stress =Y × Strain , where 

€ 

Y is a constant 
called Young’s modulus and Young’s modulus for bone is 

€ 

Y =16 ×109 N
m 2 .  (Data are 

taken from Biomedical Applications of Introductory Physics, by J.A. Tuszynski and 
J.M. Dixon, Wiley, 2002 and Clinically Oriented Anatomy, Ed. by K.L. Moore & A.F. 
Dalley, LWW Publishing, 2005) 

 
a. Using the generalized expression above for Hooke’s law, under normal 

conditions, by how much do you compress a single femur when you stand upright 
at rest?  Assume that you have a mass of 

€ 

60kg. 

€ 

Stress =Y × Strain→ F
A

=Y × ΔL
L
→ΔL =

FL
AY

=
FWL
2AY

=
mgL
2AY

ΔL =
60kg × 9.8 m

s2
× 0.48m

2 × π
.0234m
2

 

 
 

 

 
 2

 

 
 

 

 
 ×16 ×109 N

m 2

= 2.1×10−5m = 0.021mm  

Here we are looking at calculating the change in length of a single femur.  Each 
leg supports only one-half of your total weight. 
 

b. Suppose that you were to somehow compress your femur by 

€ 

6mm  (maybe by 
falling while rock climbing and by the way this amount is more than enough to 
break your femur).  What is the ratio of the force needed to break your leg to your 
weight? 
 

€ 

Stress =Y × Strain→ F
A

=Y × ΔL
L
→ F =

YAΔL
L

F =
16 ×109 N

m 2 × π
.0234m
2

 

 
 

 

 
 2

 

 
 

 

 
 × 0.006m

0.48m
= 8.6 ×104N =αFW

α =
F
FW

=
8.6 ×104N
60kg × 9.8 m

s2
=141

 



c. Starting from rest, through what height would you have to fall landing straight-
legged on your feet, so that you could compress a femur by 

€ 

6mm ?  (Hint:  Recall 
Hooke’s law from class and you will need to apply this to the generalized form of 
Hooke’s law above to determine a value for the stiffness of your femur.) 

 
Using conservation of energy we have: 

 

€ 

ΔE = 0 = ΔKE + ΔUg + ΔUs = 1
2mv f

2 − 1
2mvi

2( ) + mgy f −mgyi( ) + 1
2 kx f

2 − 1
2 kxi

2( )

0 =
mg
2

−d( ) − mg
2
h

 

 
 

 

 
 + 1

2 k −d( )2

h =
kd2

mg
− d =

1.43×107 N
m × 0.006m( )2

60kg× 9.8 m
s2

− 0.006m( ) = 0.88m

 

where the effective spring constant of a femur has been determined from the 
generalized form of Hooke’s law, 

 

€ 

Stress =Y × Strain→ F
A

=Y × ΔL
L
→ F =

AY
L
ΔL = kΔL

k =
AY
L

=
π
.0234m
2

 

 
 

 

 
 2

 

 
 

 

 
 ×16 ×109 N

m 2

0.48m
=1.43×107 N

m

 

 
 
 

d. Suppose that instead of landing straight-legged as in the previous part you bend 
your knees while landing.  In this case 
 
1. the work done in bringing you to rest would be the same, but the force on your 

femur would be less because you decelerated to rest over a larger distance. 
2. the work done in bringing you to rest would be the same, but the force on your 

femur would be greater because you decelerated to rest over a smaller 
distance. 

3. the work done in bringing you to rest would be the greater, but the force on 
your femur would be less because you decelerated to rest over a larger 
distance. 

4. the work done in bringing you to rest would be the smaller, but the force 
would be greater on your femur because you decelerated to rest over a smaller 
distance. 

 
 

The work done is given by

€ 

W = ΔKE = −mgh( ) = FΔy .  Dropping from the 
same height produces the same change in kinetic energy.  But bending your 
legs makes you decelerate over a much larger distance.  Therefore the force on 
your femurs is less. 
 
 
 



3.   Suppose that you have a block of mass

€ 

m  attached to a spring of stiffness

€ 

k  and that 
the spring is compressed by a distance

€ 

x  from the equilibrium position of the spring.  
The mass is released from rest and when the block reaches the equilibrium position of 
the spring, the mass loses contact with the spring and the block slides towards and 
then down the hill of height 

€ 

h as shown below.  Assume that all surfaces are 
frictionless. 

 
 
 
 
 
 
 
 

a. What are the speed of when the block looses contact with the spring and when it 
is at the bottom of the hill in terms of the given quantities? 

 
  
 By conservation of energy we have: 

€ 

spring :   ΔE = 0 = ΔKE + ΔUg + ΔUs = 1
2 mv f

2 − 1
2 mvi

2( ) + 1
2 kx f

2 − 1
2 kxi

2( ) = vtop =
k
m
x

hill :   ΔE = 0 = ΔKE + ΔUg + ΔUs = mgy f −mgyi( ) + 1
2 mv f

2 − 1
2 mvi

2( )

                   0 = 0 −mgh( ) + 1
2 mvbottom

2 − 1
2 mvtop

2( )→ vbottom =
k
m
x 2 + 2gh

 

 
 

b.   Suppose that at the bottom of the hill, the block of mass 

€ 

m  makes an elastic head 
on collision with a second block of mass 

€ 

2m sitting at rest on a horizontal surface.  
What are the velocities of the two blocks after the collision?  (You may not use 
the formulas developed in class.  Rather, you need to derive the actual results.) 

 
 
  Using conservation of momentum and kinetic energy we have: 

€ 

pix = pfx → mvi = mv1 f + 2mv2 f ⇒ vi = v1 f + 2v2 f
KEi = KE f →

1
2mvi

2 = 1
2mv1 f

2 + 1
2 2m( )v2 f2 ⇒ vi

2 = v1 f
2 + 2v2 f

2  

where we define 

€ 

vbottom = vi .  From conservation of momentum well solve for say 

€ 

v1 f = vi − 2v2 f and substituting the result in to the equation for conservation of 
kinetic energy to determine 

€ 

v2 f . 

We get, 

€ 

vi
2 = vi − 2v2 f( )

2
+ 2v2 f

2 = vi
2 − 4v2 f vi + 4v2 f

2 + 2v2 f
2 ⇒ v2 f = 4

6 vi .  
Therefore 

€ 

v1 f = vi − 2v2 f = vi − 2 4
6 vi( ) = − 1

3 vi . 
 
 
 

h 

k 
m 

2m 



c. Defining 

€ 

y  as the height the block of mass 

€ 

m  rises after the collision, after the 
collision the block of mass 

€ 

m  will 
 

1. rise back up the entire hill sliding back toward the spring so that 

€ 

y = h . 

2.  will rise up the hill and come momentarily to rest at a point 

€ 

h < y <
h
2

. 

3. will rise up the hill and come momentarily to rest at a point 

€ 

h
2

< y < 0. 

4. not rise up the hill at all so that 

€ 

y = 0. 
 

 
Since the surface is frictionless, the block will rise to a height greater than zero.  
After the collision the block of mass 

€ 

m  has a kinetic energy given by:

€ 

KE f = 1
2mv1 f

2 = 1
2m − 1

3 vi( )2 = 1
9KEi .  Since this is less than the masses initial 

kinetic energy the block will not rise back up to the original height.  Since kinetic 
energy is conserved the block of mass 

€ 

2m  will get of the remaining 

€ 

8
9KEi , so the 

block of mass will stop at a height 

€ 

h
2

< y < 0. 

 
 
 

d.   Suppose that the block of mass 

€ 

m  collided with the block of mass 

€ 

2m  but in this 
case the two masses stuck together after the collision.  The percent of the kinetic 
energy lost in the collision is given as 

 
1. 

€ 

0% 
2. 

€ 

20% 
3. 

€ 

33%  
4. 

€ 

67% 
 

 

€ 

% =
ΔKE
KEi

 

 
 

 

 
 ×100% =

KEi −KE f

KEi

 

 
 

 

 
 ×100% = 1−

KE f

KEi

 

 
 

 

 
 ×100%

% = 1−
1
2 3m( ) m

3m
vi

 

 
 

 

 
 
2

1
2mvi

2

 

 

 
 
 
 

 

 

 
 
 
 

×100% = 1− 1
3( )[ ] ×100% = 67%

 

 
where the speed of the system after the collision was calculated using 
conservation of momentum. 

 
 

 
 
 

 



€ 

v = fλ = (331+ 0.6T) ms

β =10log I
I0
; Io =1×10−12 W

m 2

fn = nf1 = n v
2L
; fn = nf1 = n v

4L

€ 

g = 9.8m s2 G = 6.67×10−11 Nm 2

kg2

NA = 6.02×1023 atomsmole kB = 1.38×10−23 J K
σ = 5.67×10−8 W m 2K 4 vsound = 343m s

€ 

ω =
k
m

= 2πf =
2π
T

TS = 2π m
k

TP = 2π l
g

v = ±
k
m
A 1− x 2

A2

 

 
 

 

 
 

1
2

x t( ) = xmax sin ωt( )  or  xmax cos ωt( )
v t( ) = vmax cos ωt( )  or  − vmax sin ωt( )
a t( ) = −amax sin ωt( )  or  − amax cos ωt( )
vmax =ωxmax;  amax =ω 2xmax

v = fλ =
FT
µ

fn = nf1 = n v
2L

I = 2π 2 f 2ρvA2

Useful formulas: 
 
Motion in the r = x, y or z-directions Uniform Circular Motion Geometry /Algebra 

€ 

rf = r0 + v0rt + 1
2 art

2 ar =
v 2

r

v fr = v0r + art Fr = mar = m v 2

r

v fr
2 = v0r

2 + 2arΔr v =
2πr
T

            FG =G m1m2

r2  

 

€ 

Circles Triangles Spheres
C = 2πr A = 1

2 bh A = 4πr2

A = πr2 V = 4
3 πr

3

Quadratic equation : ax 2 + bx + c = 0,

whose solutions are given by : x =
−b ± b2 − 4ac

2a

  

 
Vectors      Useful Constants 

 

 
Linear Momentum/Forces      Work/Energy    Heat 

€ 

p
→

= mv
→

Kt = 1
2 mv

2

p
→

f = p
→

i+ F
→

Δt            Kr = 1
2 Iω

2

F
→

= ma
→

Ug = mgh

Fs
→

= −k x
→

US = 1
2 kx

2

Ff = µFN WT = FdCosθ = ΔET

WR = τθ = ΔER

Wnet =WR +WT = ΔER + ΔET

ΔER + ΔET + ΔUg + ΔUS = ΔE = 0
ΔER + ΔET + ΔUg + ΔUS = −ΔEdissipative

 

€ 

TC = 5
9 TF − 32[ ]

TF = 9
5TC + 32

Lnew = Lold 1+αΔT( )
Anew = Aold 1+ 2αΔT( )
Vnew =Vold 1+ βΔT( ) : β = 3α
PV = NkBT
3
2 kBT = 1

2mv
2

ΔQ = mcΔT

PC =
ΔQ
Δt

=
kA
L
ΔT

PR =
ΔQ
ΔT

= εσAΔT 4

ΔU = ΔQ−ΔW

 

Rotational Motion                 Fluids    Simple Harmonic Motion/Waves 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
Sound 
 
 
 

€ 

magnitude of avector = vx
2 + v 2y

directionof avector→φ = tan−1
vy
vx

 

 
 

 

 
 


