Spring 2025

PHY-110

Name and Group Members: ____

Lab 3: Flying Pigs

Goal:

Analyze an object moving in uniform circular motion. Devise an experiment to predict the **period** (*time to complete one revolution*) from measurable parameters of the motion. Test the prediction by comparing the theoretical value of the period to the experimental one.

 \checkmark Note the pig's motion. What kind of motion is this?

 \checkmark Of the parameters shown in the figure below, which do you think are measurable?

 \checkmark What parameters must be calculated from the measurables?

Theoretical Analysis:

Rewrite the expression of the period that you derived in the lecture in terms of the measurable quantities.

Experimental procedure:

Examine the experimental set up: A plastic pig with wings is connected to a length of string from a magnetic hook which is attached to the ceiling.

Start the experiment: Open the pig's wings (so that it clicks into place) and turn on the switch on the pig's side, and watch it fly!

Give the pig a sideways initial velocity so that you set it into circular motion. Practice that a few times to get a near-perfect circular motion.

✓ Using the available equipment, measure the time it takes the pig to complete one revolution. ***Remember that only one measurement won't be very accurate...

 \checkmark Measure other parameters of the motion, as you see fit.

Data Analysis:

✓ In an Excel Spreadsheet, record your measured values of the period. Calculate the average value of the period *T* as well as the uncertainty δT . This will give you the **experimental** value of the period.

✓ Plug your measured parameters in the theoretical equation previously derived. What is the **theoretical (predicted) period** of the motion? Determine the uncertainty in your predicted value using an appropriate error propagation equation.

 \checkmark Compare your "theoretical value" of the period to your measured (experimental) value. Do they agree within the uncertainty?

 \checkmark Calculate the values of the following quantities as well (no uncertainty is required):

- frequency f of the motion (recall that f = 1/T),
- speed *v* of the pig,
- acceleration of the pig,
- tension in the string.

If there is a significant disagreement, re-examine your theory. See if you can reconcile the results and your theoretical model. You may also confer with other lab groups and see if their data leads to a calculated period that agrees with their measured value.