# Physics 15 <br> Second Hour Exam 

Name

| Multiple Choice | $/ 20$ |
| :--- | ---: |
| Problem 1 | $/ 30$ |
| Problem 2 | $/ 26$ |
| Problem 3 | $/ 24$ |
| --------------------------100 |  |

## Part I: Free Response Problems

Please show all work in order to receive partial credit. If your solutions are illegible no credit will be given.

1. Consider the collision of two 7.0 Kg Olympic curling stones as shown below. One stone is initially at rest and the other approaches with a speed of $\mathrm{v}_{1 \mathrm{i}}=1.5 \mathrm{~m} / \mathrm{s}$. The collision is not head-on, but rather a glancing one. Stone 1 moves away at an angle of $66^{\circ}$. (Note that the picture is not to scale.)

b. Write the simplest equations that govern conservation of energy.
c. What is the deflection angle, with respect to the initial line of motion, of stone 2 ?
d. What is the final velocity of stone 1 ?
e. What is the final velocity of stone 2 ?
2. Civil engineers that design roadways have to worry about the maximum speed cars can have and still negotiate turns in the roadway safely. Consider the two cases below. In the first case consider a level road where static friction is the force that is responsible for the car negotiating the curve safely. In the second case, the roadway is banked at an angle $\theta$ with respect to the horizontal, in order to not rely on friction to turn the corner, but instead some part of the weight of the car.
a. Draw the free-body diagram for the car making the left hand turn on the flat roadway. (Hint: Where the tire makes contact with the road, the tire is momentarily at rest and what allows the car to turn the corner is static friction, which is the product of $\mu_{\mathrm{s}} \mathrm{F}_{\mathrm{N}}$, where $\mu_{\mathrm{s}}=1.00$.)

b. What is the maximum speed with which a 1500 kg car can make a left hand turn around a curve of radius 50 m on the level road without sliding?
c. Draw the free-body diagram for the car making the left hand turn on the banked roadway. (Hint: Do not use a tilted coordinate system, similar to that used in inclined plane problems. The center of the circle around which the car is traveling is in the same horizontal plane as the car and this defines R for circular motion problems.)

d. What is the speed at which the 1500 kg car can take this curve without relying on friction, if the radius of the curve is 70 m and the roadway is banked at $15^{\circ}$ ?
3. You have been asked to design a "ballistic-spring system" to measure the speed of bullets. A spring whose spring constant $k$ is suspended from the ceiling and a block of mass $M$ hangs from the spring. A bullet of mass $m$ is fired vertically upward into the bottom of the block. The spring's maximum compression $d$ is measured.
a. Find an expression for the bullet's initial speed $v_{b}$ in terms of $m, M, k$, and $d$ (ignore any changes in gravitational potential energy).
b. What is the speed of a 10 g bullet if the block's mass is 2 kg and if the spring with spring constant $\mathrm{k}=50 \mathrm{~N} / \mathrm{m}$, was compressed 45 cm ?
c. The speed of sound in air is $343 \mathrm{~m} / \mathrm{s}$. Does your result above make sense with respect to the speed of sound? Explain.
d. What is the period of the resulting oscillation of the block-bullet-spring system?

## Part II: Multiple-Choice

Circle your answer to each question. Each multiple-choice question is worth 2 points for a total of 20 points.

1. What is the change in momentum for an 80 kg person falling from a height of 32 m above the ground when they collide with the ground?
a. $224 \mathrm{kgm} / \mathrm{s}$
b. $2000 \mathrm{kgm} / \mathrm{s}$
c. $2560 \mathrm{kgm} / \mathrm{s}$
d. $0 \mathrm{kgm} / \mathrm{s}$
2. A 10 kg block pulled across a horizontal surface (with coefficient of kinetic friction $\mu_{\mathrm{k}}$ $=0.6$ ) by a 15 N force directed at $30^{\circ}$ above the horizontal. How much work is done by gravity if the block is pulled along the horizontal surface a distance of 6 m ?
a. 0 J
b. 52 J
c. 98 J
d. -59J
3. Consider a 1 m long stick of uniform mass 500 g . Suppose that zero corresponds to the left end of the stick and that a weight of 50 g is added at the 75 cm mark. What is the x coordinate of the center of mass?
a. 47.7 cm
b. 50 cm
c. 52.3 cm
d. 75 cm
4. A very light object (a) and a very heavy (b) object are sliding along a frictionless surface at the same speed. They slide up a frictionless hill. Which of the following is true, where $h$ is the height the object reaches above the horizontal surface?
a. $h_{a}>h_{b}$
b. $h_{b}>h_{a}$
c. $\mathrm{h}_{\mathrm{a}}=\mathrm{h}_{\mathrm{b}}$
d. cannot tell from the information given.
5. Suppose that a bowling ball and a baseball are thrown off of a high building with the same magnitude of the velocity. Let the bowling ball be thrown horizontally while the baseball is thrown upward at an angle $\theta$ with respect to the horizontal. Ignoring air resistance, the balls
a. have the same magnitude of the velocity at the bottom
b. $\mathrm{v}_{\text {baseball }}>\mathrm{v}_{\text {bowling ball }}$
c. $\mathrm{V}_{\text {bowling ball }}>\mathrm{v}_{\text {baseball }}$
d. cannot tell from the information given?
6. A large truck runs into a small car and pushes it 20 m before stopping. During the collision
a. the truck exerts a larger magnitude force on the car than the car exerts on the truck,
b. the truck exerts a smaller magnitude force on the car than the car exerts on the truck,
c. the truck and car exert equal magnitude forces on each other,
d. the car doesn't actually exert a force on the truck, the truck just keeps on going.
7. Suppose that a ball is dropped from a building. At the point of release it has a gravitational potential energy of U. Just before it hits the ground, it has a kinetic energy of K. Taking into account air resistance, what is the relationship between K and U ?
a. K > U
b. $\mathrm{K}<\mathrm{U}$
c. $\mathrm{K}=\mathrm{U}$
d. cannot tell from the information given.
8. A 1 kg duck is flying horizontally at $20 \mathrm{~m} / \mathrm{s}$ when seized by a 0.8 kg hawk diving at $30 \mathrm{~m} / \mathrm{s}$. The hawk is coming in from behind and makes an angle of $30^{\circ}$ from the vertical just before contact. The magnitude of the velocity of the birds just after contact is
a. $13.2 \mathrm{~m} / \mathrm{s}$
b. $21.3 \mathrm{~m} / \mathrm{s}$
c. $31.6 \mathrm{~m} / \mathrm{s}$
d. $42.6 \mathrm{~m} / \mathrm{s}$
9. In the above question, the angle with respect to the horizontal that the birds make is
a. $33^{\circ}$
b. $-33^{0}$
c. $49^{\circ}$
d. $-49^{\circ}$
10. What is the power of a motor that is required to lift a 2000 kg elevator at a constant rate of $3 \mathrm{~m} / \mathrm{s}$ ?
a. 5.88 kW
b. 58.8 kW
c. 117.6 kW
d. 29.4 kW

## Useful formulas:

Motion in the $x, y$ or $z$-directions
$r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2}$
$v_{f r}=v_{0 r}+a_{r} t$
$v_{f r}{ }^{2}=v_{0 r}{ }^{2}+2 a_{r} \Delta r$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

## Geometry/Algebra

| Circles | Triangles | Spheres |
| :--- | :---: | :--- |
| $C=2 \pi r$ | $A=\frac{1}{2} b h$ | $A=4 \pi r^{2}$ |
| $A=\pi r^{2}$ |  | $V=\frac{4}{3} \pi r^{3}$ |

Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given by: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Vectors
magnitude of a vector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

## Linear Momentum/Forces

$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

## Rotational Motion

$\theta_{f}=\theta_{i}+\omega_{i} t \frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$

## Useful Constants

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}
\end{aligned} \quad V_{\text {sound }}=3.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \mathrm{~s} / \mathrm{s} .
$$

Work/Energy
$K_{t}=\frac{1}{2} m v^{2}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$

Heat
$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$
$P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$

## Fluids

$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

## Simple Harmonic Motion/Waves

$\omega=2 \pi f=\frac{2 \pi}{T}$
$T_{S}=2 \pi \sqrt{\frac{m}{k}}$
$T_{P}=2 \pi \sqrt{\frac{l}{g}}$
$v= \pm v_{\max }\left(\sqrt{1-\frac{x^{2}}{A^{2}}}\right)$
$v_{\text {max }}=\omega A$
$a_{\text {max }}=\omega^{2} A$
$v=f \lambda$
$v=\sqrt{\frac{F_{T}}{\mu}}$
$f_{n}=n f_{1}=n \frac{v}{2 L}$

