Name
Physics 110 Quiz \#1, April 4, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. A standard baseball has a circumference of approximately 23 cm . If a baseball had the same mass per unit volume as a neutron or a proton, about what would the mass of the baseball be? Suppose that a neutron or a proton is a ball that has a diameter of $1 \times 10^{-15} \mathrm{~m}$ and a mass of $1 \times 10^{-27} \mathrm{~kg}$. Hint: The volume of a sphere is $\frac{4}{3} \pi r^{3}$.

$$
\begin{aligned}
& \frac{m_{b b}}{V_{b b}}=\frac{m_{p}}{V_{p}} \rightarrow m_{b b}=m_{p} \frac{V_{b b}}{V_{p}}=m_{p} \frac{\frac{4}{3} \pi r_{b b}^{3}}{\frac{4}{3} \pi r_{p}^{3}}=m_{p}\left(\frac{r_{b b}}{r_{p}}\right)^{3} \\
& m_{b b}=m_{p}\left(\frac{r_{b b}}{r_{p}}\right)^{3}=1 \times 10^{-27} \mathrm{~kg}\left(\frac{0.04 \mathrm{~m}}{0.5 \times 10^{-15} \mathrm{~m}}\right)^{3}=5.1 \times 10^{14} \mathrm{~kg} \\
& \text { where } C_{b b}=2 \pi r_{b b} \rightarrow r_{b b}=\frac{c}{2 \pi}=\frac{0.23 \mathrm{~m}}{2 \pi}=0.04 \mathrm{~m}
\end{aligned}
$$

2. In the late 1800 s Jules Verne wrote a book about the adventures of Captain Nemo and his submarine called the Nautilus, as he (and two others) traveled around the world under the sea. The book was called 20,000 Leagues Under the Sea. A league is a unit of distance equal to about three miles. How many feet under the sea did Captain Nemo travel if there $5280 f t=1 m i ?$
2×10^{4} leagues $\times \frac{3 \text { miles }}{1 \text { league }} \times \frac{5280 \mathrm{ft}}{1 \text { mile }}=3.2 \times 10^{8} \mathrm{ft}$
3. In the equation $d=c t+b, d$ is measured in furlongs (1 furlong $\sim 200 m \sim 600 f t$) and t is measured in fortnights (1 fortnight ~ 14 days). What are the dimensions (units) of c and b ?
c is the slope of the line so its units are $\frac{\Delta d}{\Delta t}$, or furlongs per fortnight?
b is the y-intercept so it has the same units as d, or furlongs.
4. An object is observed to undergo motion in 1D along the x axis. The velocity of the object as a function of time is shown on the right. Which of the following graphs below gives the acceleration of the object as a function of time?

a.

b.

c.

d.

e.

f. None of the choices are correct.
5. From the velocity versus time graph in question 4 , what is the displacement of the object between the time interval $4 s$ and $8 s$?

$$
\Delta x=v_{\text {avg }} \Delta t=\left(\frac{v_{f}+v_{i}}{2}\right)\left(t_{f}-t_{i}\right)=\left(\frac{12 \frac{m}{s}+0 \frac{m}{s}}{2}\right)(8 s-4 s)=24 m
$$

Physics 110 Formulas

Equations of Motion
displacement: $\left\{\begin{array}{c}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \Delta x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y\end{array}\right.$

Uniform Circular Motion

$$
F_{r}=m a_{r}=m \frac{v^{2}}{r} ; \quad a_{r}=\frac{v^{2}}{r}
$$

$$
v=\frac{2 \pi r}{T}
$$

$$
F_{G}=G \frac{m_{1} m_{2}}{r^{2}}
$$

Vectors
magnitude of a vector: $v=|\vec{v}|=\sqrt{v_{x}{ }^{2}+v_{y}^{2}}$
direction of a vector: $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Useful Constants

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23 \mathrm{~J} / \mathrm{K}} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Linear Momentum/Forces
Work/Energy
Heat

$$
K_{t}=\frac{1}{2} m v^{2}
$$

$\vec{p}=m \vec{v}$

$$
\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t
$$

$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$

$$
\vec{F}=m \vec{a}
$$

$$
\vec{F}_{s}=-k \vec{x}
$$

$$
F_{f}=\mu F_{N}
$$

$$
T_{C}=\frac{5}{9}\left[T_{F}-32\right]
$$

$$
K_{r}=\frac{1}{2} I \omega^{2}
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$

Sound
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Geometry/Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h$	$A=4 \pi r^{2}$
$A=\pi r^{2}$		$V=\frac{4}{3} \pi r^{3}$

Quadratic equation : $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho v^{2}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

Simple Harmonic Motion/Waves

$$
\begin{aligned}
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& T_{S}=2 \pi \sqrt{\frac{m}{k}} \\
& T_{P}=2 \pi \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
x(t)=A \sin \left(\frac{2 \pi t}{T}\right)
$$

$$
v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi t}{T}\right)
$$

$$
a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi t}{T}\right)
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$$
I=2 \pi^{2} f^{2} \rho v A^{2}
$$

