Name \qquad
Physics 110 Quiz \#1, September 20, 2013
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

An object is launched vertically upwards from the edge of a cliff that is $42 m$ high. The origin of the coordinate system is taken to be at the top of the cliff and vertically up is the positive y-direction. The ball is launched at a velocity of $7.7 \frac{\mathrm{~m}}{\mathrm{~s}}, 1.0 \mathrm{~m}$ above the top of the cliff.

1. Suppose that the following position versus time graph were representative of the motion described on the right. The velocity versus time graph depicting the motion of the object would be best described by which of the following graphs below?

a.

d.

e.

2. What is the object's maximum height above the cliff?

$$
y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}=1 m+\left(7.7 \frac{m}{s} \times 0.79 \mathrm{~s}\right)-\frac{1}{2}\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(0.79 \mathrm{~s})^{2}=4.0 \mathrm{~m}
$$

4. What is the time of flight of the object from the time it's released until just before it impacts the ground below the cliff?

$$
y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2} \rightarrow-42 m=1 m+\left(7.7 \frac{\mathrm{~m}}{\mathrm{~s}} \times t_{\text {tof }}\right)-\frac{1}{2}\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t_{\text {tof }}^{2} \xrightarrow{-t_{\text {tof }}=\left\{\begin{array}{c}
3.9 \mathrm{~s} \\
-2.3 \mathrm{~s}
\end{array}\right\}}
$$

5. What is the velocity of the object just before it strikes the ground below the cliff?

$$
v_{f y}=v_{i y}+a_{y} t=7.7 \frac{\mathrm{~m}}{\mathrm{~s}}-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} t_{\text {tof }}=7.7 \frac{\mathrm{~m}}{\mathrm{~s}}-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 3.9 \mathrm{~s}=-30.5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathrm{y}$ or z -directions
$r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2}$
$v_{f r}=v_{0 r}+a_{r} t$
$v_{f r}^{2}=v_{0 r}^{2}+2 a_{r} \Delta r$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r} \quad \begin{array}{llc}\text { Circles } & \text { Triangles } & \text { Spheres } \\ C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ 2 \pi r & A=\pi r^{2} & \\ V=\frac{4}{3} \pi r^{3}\end{array}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \quad$ whose solutions are given by $: x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
magnitude of a vector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11 \mathrm{Nm}^{2}} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Work/Energy

$$
K_{t}=\frac{1}{2} m v^{2}
$$

$K_{t}=\frac{1}{2} m v^{2}$

$$
K_{r}=\frac{1}{2} I \omega^{2}
$$

$U_{g}=m g h$

$$
U_{g}=m g h
$$

$$
U_{S}=\frac{1}{2} k x^{2}
$$

$$
W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}
$$

$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$

$$
W_{R}=\tau \theta=\Delta E_{R}
$$ $W_{R}=\tau \theta=\Delta E_{R}$

$$
W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}
$$

$$
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0
$$

$$
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }}
$$

