Name \qquad
Physics 110 Quiz \#2, April 9, 2021
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. A ball is thrown from ground level 18 m below a window and is seen to pass upwards past the window with a speed of $14 \frac{\mathrm{~m}}{\mathrm{~s}}$. What was the initial launch speed of the ball?

$$
v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y \rightarrow v_{i y}=\sqrt{v_{f y}^{2}+2 g \Delta y}=\sqrt{\left(14 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+2 \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 18 \mathrm{~m}}=23.4 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

2. What was the maximum height reached by the ball above the ground?

$$
v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y \rightarrow 0=v_{i y}^{2}-2 g \Delta y \rightarrow y_{f}=\frac{v_{i y}^{2}}{2 g}=\frac{\left(14 \frac{m}{s}\right)^{2}}{2 \times 9.8 \frac{m}{s^{2}}}=28 \mathrm{~m}
$$

3. How long does it take the ball to reach ground level again?

Time to rise to maximum height from the ground:
$v_{f y}=v_{i y}+a_{y} t \rightarrow 0=v_{i y}-g t \rightarrow t_{\text {rise }}=\frac{v_{i y}}{g}=\frac{14 \frac{\mathrm{~m}}{\mathrm{~s}}}{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=2.4 \mathrm{~s}$
Time to fall from maximum height to the ground
$y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2} \rightarrow t_{\text {fall }}=\sqrt{\frac{2 y_{f}}{g}}=\sqrt{\frac{2 \times 28 m}{9.8 \frac{m}{s^{2}}}}=2.4 \mathrm{~s}$
Time of flight is the sum of these two times or, $t=t_{\text {rise }}+t_{\text {fall }}=2.4 s+2.4 s=4.8 s$
4. At what time(s) is the ball at a height of $y=12 m$ above the ground?

$$
\begin{aligned}
& y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2} \rightarrow 12 m=23.4 \frac{m}{s} t-\frac{1}{2}\left(9.8 \frac{m}{s^{2}}\right) t^{2} \\
& 0=-4.9 t^{2}-23.4 t-12 \rightarrow t=\frac{23.4 \pm \sqrt{(-23.4)^{2}-(4 \times-4.9 \times-12)}}{2(-4.9)} \\
& t=\left\{\begin{array}{c}
0.59 s(\text { on the way up }) \\
4.19 s \text { (on the way down) }
\end{array}\right.
\end{aligned}
$$

5. Suppose that the ball was launched at an angle of θ, measured with respect to the ground for $0^{\circ}<\theta<90^{\circ}$ at a speed v as shown on the right. The components of the ball's velocity are given by which of the following?
a. $v_{x}=v \cos \theta \& v_{y}=v \sin \theta$.
b. $v_{x}=-v \cos \theta \& v_{y}=v \sin \theta$.
c. $v_{x}=v \cos \theta \& v_{y}=-v \sin \theta$.
d. $v_{x}=-v \cos \theta \& v_{y}=-v \sin \theta$.

e. None of the above give the correct components of the final velocity of the ball.

Physics 110 Formulas

Motion
$\Delta \mathrm{x}=x_{f}-x_{i} \quad v_{\text {avg }}=\frac{\Delta x}{\Delta t} \quad a_{\text {avg }}=\frac{\Delta v}{\Delta t}$

Equations of Motion
displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} y\end{array}\right.$

Uniform Circular Motion
$F_{r}=m a_{r}=m \frac{v^{2}}{r} ; \quad a_{r}=\frac{v^{2}}{r}$
$v=\frac{2 r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Vectors
magnitude of a vector: $v=|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector: $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$
Useful Constants

$$
\begin{array}{rlrlrl}
g & =9.8 \mathrm{~m} / \mathrm{s}^{2} & G=6.67 & 10^{11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
N_{A} & =6.02 & 10^{23} \text { atoms } / \text { mole } & k_{B}=1.38 \quad 10^{23} \mathrm{~J} / \mathrm{K} \\
& =5.67 \quad 10^{8} \mathrm{~W} / \mathrm{m}^{2} K^{4} & v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \quad t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=k \vec{x}$
$F_{f}=F_{N}$

Work/Energy

$$
K_{t}=\frac{1}{2} m v^{2}
$$

$$
K_{r}=\frac{1}{2} I
$$

$$
U_{g}=m g h
$$

$$
U_{S}=\frac{1}{2} k x^{2}
$$

$$
W_{T}=F d \operatorname{Cos}=E_{T}
$$

$$
W_{R}==E_{R}
$$

$$
W_{n e t}=W_{R}+W_{T}=E_{R}+E_{T}
$$

$$
E_{R}+E_{T}+U_{g}+U_{S}=0
$$

$$
\begin{aligned}
& E_{R}+E_{T}+U_{g}+U_{S}=0 \\
& E_{R}+E_{T}+U_{g}+U_{S}=E_{\text {diss }} \quad P_{C}=\frac{Q}{t}=\frac{k A}{L} T
\end{aligned}
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound

$$
\begin{aligned}
v & =f=(331+0.6 T) \frac{\mathrm{m}}{\mathrm{~s}} \\
& =10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \quad 10^{12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
\end{aligned}
$$

$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Heat
$T_{C}=\frac{5}{9}\left[\begin{array}{ll}T_{F} & 32\end{array}\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \quad T)$
$V_{\text {new }}=V_{\text {old }}(1+T):=3$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$Q=m c T$

$$
P_{R}=\frac{Q}{T}=A T^{4}
$$

$$
U=Q \quad W
$$

Simple Harmonic Motion/Waves

$$
\begin{aligned}
& =2 f=\frac{2}{T} \\
& T_{S}=2 \sqrt{\frac{m}{k}} \\
& T_{P}=2 \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1 \frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}} \\
& x(t)=A \sin \left(\frac{2 t}{T}\right) \\
& v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 t}{T}\right) \\
& a(t)=A \frac{k}{m} \sin \left(\frac{2 t}{T}\right) \\
& v=f=\sqrt{\frac{F_{T}}{}} \\
& f_{n}=n f_{1}=n \frac{v}{2 L} \\
& I=2^{2} f^{2} v A^{2}
\end{aligned}
$$

