Name \qquad
Physics 110 Quiz \#2, April 8, 2022
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A parachutist "walks" out of an airplane that is flying in a horizontal straight line 2500 m above the ground. Suppose that the parachutist free-falls from rest a distance of 50 m and that air resistance on the person is negligible. In the questions below, assume that the positive y-direction points up from the ground.

1. How long does it take the parachutist to fall through 50 m ?

$$
y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2} \rightarrow t=\sqrt{\frac{2 y_{f}}{g}}=\sqrt{\frac{2 \times 50 \mathrm{~m}}{9.8 \frac{m}{s^{2}}}}=3.2 \mathrm{~s}
$$

2. What is the speed of the parachutist after they have fallen through 50 m ?

$$
\begin{aligned}
& v_{f y}=v_{i y}+a_{y} t=-g t=-9.8 \frac{\mathrm{~m}}{\frac{s^{2}}{} \times 3.2 \mathrm{~s}=-31.3 \frac{\mathrm{~m}}{\mathrm{~s}}} \\
& \text { The speed }\left|v_{f y}\right|=\left|-31.3 \frac{\mathrm{~m}}{\mathrm{~s}}\right|=31.3 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

3. After the parachutist has fallen 50 m , they open their parachute and fall the rest of the way to the ground with a constant acceleration. If the parachutist has a speed of $9 \frac{m}{s}$ just before touching down on the ground, what was the magnitude and direction of constant acceleration?

$$
v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y \rightarrow a_{y}=\frac{v_{f y}^{2}-v_{i y}^{2}}{2 \Delta y}=\frac{\left(-9 \frac{m}{s}\right)^{2}-\left(-31.3 \frac{m}{s}\right)^{2}}{2(0-2450 \mathrm{~m})}=+0.18 \frac{\mathrm{~m}}{s^{2}}
$$

4. How long did it take the parachutist to land on the ground from the time they left the airplane?

$$
\begin{aligned}
& t_{\text {total }}=t_{\text {fall }}+t_{\text {chute }} \\
& v_{f y}=v_{i y}+a_{y} t_{\text {chute }} \rightarrow t_{\text {chute }}=\frac{v_{f y}-v_{i y}}{a_{y}}=\frac{-9 \frac{m}{s}-\left(-31.3 \frac{m}{s}\right)}{0.18 \frac{m}{s^{2}}}=123.9 \mathrm{~s} \\
& t_{\text {total }}=t_{\text {fall }}+t_{\text {chute }}=3.2 \mathrm{~s}+123.9 \mathrm{~s}=127.1 \mathrm{~s}
\end{aligned}
$$

5. In the last 4 questions we assumed that air resistance was negligible. What if it was not? As you fall through the air, the air exerts a force on you opposite your velocity. This air force creates an additional constant acceleration on you opposite to the acceleration due to gravity. If we do not ignore air resistance, what happens to your displacement, velocity, acceleration and time to fall the first 50 m ?
Δx does not change.
v decreases and you fall slightly slower since you are not in free fall and the net acceleration is still down but smaller.
a is smaller and is given by $-g+a_{a i r}$.
$t_{f a l l}$ is larger since the net acceleration is smaller.

Vectors
$v=\sqrt{v_{x}^{2}+v_{y}^{2}}$
$\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Motion Definitions

Displacement: $\Delta x=x_{f}-x_{i}$
Average velocity: $v_{\text {avg }}=\frac{\Delta x}{\Delta t}$
Average acceleration: $a_{a v g}=\frac{\Delta v}{\Delta t}$

Equations of Motion

displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \Delta x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y\end{array}\right.$

Rotational Motion Definitions
Angular displacement: $\Delta s=R \Delta \theta$
Angular velocity: $\omega=\frac{\Delta \theta}{\Delta t} \rightarrow v=R \omega$
Angular acceleration: $\alpha=\frac{\Delta \omega}{\Delta t} \rightarrow\left\{\begin{array}{c}a_{t}=r \alpha \\ a_{c}=r \omega^{2}\end{array}\right.$
Rotational Equations of Motion

$$
\begin{aligned}
& \theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2} \\
& \omega_{f}=\omega_{i}+\alpha t \\
& \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta
\end{aligned}
$$

Momentum \& Force
$\vec{p}=m \vec{v} \rightarrow p_{x}=m v_{x} ; p_{y}=m v_{y}$
$\Delta \vec{p}=\vec{F} \Delta t \rightarrow \vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=\frac{d \vec{p}}{d t}=m \vec{a} \rightarrow F_{x}=m a_{x} ; F_{y}=m a_{y}$
$F_{f r}=\mu F_{N}$
$F_{w}=m g$
$F_{S}=-k x$
$F_{G}=G \frac{M_{1} M_{2}}{r^{2}}$
$F_{c}=m a_{c}=m \frac{v^{2}}{R}$
Work \& Energy
$\left\{\begin{array}{c}W_{T}=\int \vec{F} \cdot d \vec{r}=F d r \cos \theta=\Delta K_{T} \\ W_{R}=\int \vec{\tau} \cdot d \vec{\theta}=\tau d \theta=\Delta K_{R}\end{array}\right.$
$W_{n e t}=W_{T}+W_{R}=\Delta K_{T}+\Delta K_{R}=-\Delta U$
$K_{T}=\frac{1}{2} m v^{2}$
$K_{R}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g y$
$U_{s}=\frac{1}{2} k x^{2}$
$\Delta E=\Delta E_{R}+\Delta E_{T}$
$\Delta E=\Delta K_{R}+\Delta K_{T}+\Delta U_{g}+\Delta U_{s}=\left\{\begin{array}{c}0 \\ W_{f r}\end{array}\right.$
Rotational Momentum \& Force

$$
\begin{aligned}
& \vec{\tau}=\vec{r} \times \vec{F} ; \tau=r_{\perp} F=r F_{\perp}=r F \sin \theta \\
& \tau=\frac{\Delta L}{\Delta t}=I \alpha \\
& L=I \omega \\
& \Delta \vec{L}=\vec{\tau} \Delta t \rightarrow \vec{L}_{f}=\vec{L}_{i}+\vec{\tau} \Delta t
\end{aligned}
$$

Fluids
$\rho=\frac{m}{V}$
$P=\frac{F}{A}$
$P_{y}=P_{\text {air }}+\rho g y$
$F_{B}=\rho g V$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$; compressible $A_{1} v_{1}=A_{2} v_{2}$; incompressible
$P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$

Simple Harmonic Motion
$\omega=2 \pi f=\frac{2 \pi}{T}$
$T_{s}=2 \pi \sqrt{\frac{m}{k}} ; \quad \omega=\sqrt{\frac{k}{m}}$
$T_{p}=2 \pi \sqrt{\frac{l}{g}} ; \quad \omega=\sqrt{\frac{g}{l}}$

Geometry/Algebra
Circles:

$$
A=\pi r^{2} \quad C=2 \pi r=\pi D
$$

Spheres: $\quad A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$
Triangles: $\quad A=\frac{1}{2} b h$
Quadratics: $\quad a x^{2}+b x+c=0 \rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad v= \pm \omega x_{\max } \sqrt{1-\left(\frac{x}{x_{\max }}\right)^{2}}$

Sound
$v_{s}=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{o}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; n=1,2,3, \ldots$ open pipes
$f_{n}=n f_{1}=n \frac{v}{4 L} ; n=1,3,5, \ldots$ closed pipes
Waves
$v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; n=1,2,3, \ldots$
$I=2 \pi^{2} f^{2} \rho v A^{2}$

Equations of Motion for SHM
$x(t)=\left\{\begin{array}{l}x_{\text {max }} \sin \left(\frac{2 \pi}{T} t\right) \\ x_{\text {max }} \cos \left(\frac{2 \pi}{T} t\right)\end{array}\right.$
$v(t)=\left\{\begin{array}{c}v_{\text {max }} \cos \left(\frac{2 \pi}{T} t\right) \\ -v_{\text {max }} \sin \left(\frac{2 \pi}{T} t\right)\end{array}\right.$
$a(t)=\left\{\begin{array}{l}-a_{\text {max }} \sin \left(\frac{2 \pi}{T} t\right) \\ -a_{\text {max }} \cos \left(\frac{2 \pi}{T} t\right)\end{array}\right.$
$v= \pm v_{\max } \sqrt{1-\left(\frac{x}{x_{\max }}\right)^{2}}$
nano $=1 \times 10^{-9}$
micro $=1 \times 10^{-6}$
milli $=1 \times 10^{-3}$
centi $=1 \times 10^{-2}$
kilo $=1 \times 10^{3}$
$m e g a=1 \times 10^{6}$

