Name
Physics 110 Quiz \#3, October 11, 2019
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Consider the arrangement of masses shown below. Mass $m_{1}=0.5 \mathrm{~kg}$ is initially at rest on a horizontal surface and is connected to a mass $m_{2}=2.5 \mathrm{~kg}$, also initially at rest, on the ramp inclined at $\theta=50^{\circ}$ with respect to the horizontal.
a. If the both masses are simultaneously released from rest and if all of the surfaces are frictionless, what is the speed of mass m_{2} when it reaches the bottom of the ramp, a distance of $0.3 m$ from where it was released?

Both masses will acquire the same final speed because the rope connects them. The increase in kinetic energy of both masses comes from the decrease in gravitational potential energy of the mass on the incline.

$$
\begin{aligned}
& \Delta E=\Delta K+\Delta U_{g}+\Delta U_{s}=\left(\Delta K_{1}+\Delta U_{g 1}\right)+\left(\Delta K_{2}+\Delta U_{g 2}\right)+\Delta U_{s}=0 \\
& \begin{array}{l}
0= \\
\quad\left[\left(\frac{1}{2} m_{1} v_{1 f}^{2}-\frac{1}{2} m_{1} v_{1 i}^{2}\right)+\left(m_{1} g y_{1 f}-m_{1} g y_{1 i}\right)\right] \\
\quad \quad \quad\left[\left(\frac{1}{2} m_{2} v_{2 f}^{2}-\frac{1}{2} m_{2} v_{2 i}^{2}\right)+\left(m_{2} g y_{2 f}-m_{2} g y_{2 i}\right)\right]+\left(\frac{1}{2} k x_{f}^{2}-\frac{1}{2} k x_{i}^{2}\right)
\end{array} \\
& \begin{array}{l}
0=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}-m_{2} g y_{2 i} \\
0=\frac{1}{2}\left(m_{1}+m_{2}\right) v_{f}^{2}-m_{2} g d \sin \theta
\end{array} \\
& \begin{aligned}
\therefore & v_{f}=\sqrt{\frac{2 m_{2} g d \sin \theta}{m_{1}+m_{2}}}=\sqrt{\frac{2 \times 2.5 k g \times 9.8 \frac{m}{s^{2}} \times 0.3 m \times \sin 50}{0.5 k g+2.5 k g}}=1.94 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
\end{aligned}
$$

b. Suppose that the instant m_{2} reaches the bottom of the ramp the cord connecting to breaks. Mass m_{2} continues moving to the right and around the loop-the-loop porting of the track. When mass m_{2} is halfway up the right-hand side of the loop, how much work was done on mass m_{2} by the force of gravity?

1. $W_{g}=0$.
2. $W_{g}=m_{2} g$.
3. $W_{g}=\left(m_{1}+m_{2}\right) g R$.
(4.) $W_{g}=-m_{2} g R$.
4. $W_{g}=-\left(\frac{m_{2}}{m_{1}+m_{2}}\right) g R$
c. What is the magnitude of the normal force on mass m_{2} when it is halfway up the right-hand side of the loop-the-loop, if the loop-the-loop has a radius $R=10 \mathrm{~cm}$?

The mass slows down as it rises due to gravity. If we take the mass, the loop-the-loop and the world as the system then we can apply conservation of energy. This will allow us to determine the speed when the mass is halfway up the right-hand side of the loop-the-loop. We have
$\Delta E=\Delta K+\Delta U_{g}+\Delta U_{s}=0$
$0=\left(\frac{1}{2} m_{2} v_{2 f}^{2}-\frac{1}{2} m_{2} v_{2 i}^{2}\right)+\left(m_{2} g y_{2 f}-m_{2} g y_{2 i}\right)$
$0=\frac{1}{2} m_{2} v_{2 f}^{2}-\frac{1}{2} m_{2} v_{2 i}^{2}+m_{2} g y_{2 f}$
$v_{2 f}=\sqrt{v_{2 i}^{2}-2 g R-}=\sqrt{\left(1.94 \frac{\mathrm{~m}}{s}\right)^{2}-\left(2 \times 9.8 \frac{\mathrm{~m}}{s^{2}} \times 0.1 \mathrm{~m}\right)}=1.34 \frac{\mathrm{~m}}{\mathrm{~s}}$
Now the normal force points towards the center of the circle. When the mass is halfway up the righthand side of the loop-the-loop the normal force is given by

$$
F_{N}=\frac{m v^{2}}{R}=\frac{2.5 \mathrm{~kg}\left(1.34 \frac{m}{s}\right)^{2}}{0.1 m} 44.9 \mathrm{~N}
$$

Physics 110 Formulas

Equations of Motion
displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \Delta x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y\end{array}\right.$

Uniform Circular Motion
$F_{r}=m a_{r}=m \frac{v^{2}}{r} ; \quad a_{r}=\frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry /Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h$	$A=4 \pi r^{2}$
$A=\pi r^{2}$		$V=\frac{4}{3} \pi r^{3}$

Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Vectors
magnitude of a vector: $v=|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector: $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \cdot d t$
$\vec{F}=m \vec{a}=\frac{d \vec{p}}{d t}$
$\vec{F}_{s}=-k \vec{x}$
$\left|\vec{F}_{f r}\right|=\mu\left|\vec{F}_{N}\right|$

Work/Energy
Heat
$K_{T}=\frac{1}{2} m v^{2}$
$K_{R}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\begin{aligned} & \Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0 \\ & \Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }}\end{aligned} \quad P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$
Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound
$v=f \lambda=(331+0.6 T) \frac{\mathrm{m}}{\mathrm{s}}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$
$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$
$=\Delta Q-\Delta W$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
Simple Harmonic Motion/Waves

$$
\omega=2 \pi f=\frac{2 \pi}{T}
$$

$$
T_{S}=2 \pi \sqrt{\frac{m}{k}}
$$

$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$

$$
T_{P}=2 \pi \sqrt{\frac{l}{g}}
$$

$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$

$$
v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
$$

$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

$$
x(t)=A \sin \left(\frac{2 \pi t}{T}\right)
$$

$$
v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi t}{T}\right)
$$

$$
a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi t}{T}\right)
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$$
I=2 \pi^{2} f^{2} \rho v A^{2}
$$

Useful Constants

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23 \mathrm{~J} / \mathrm{K}} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

