Name \qquad
Physics 110 Quiz \#3, October 9, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A box of mass 10 kg is pushed up a rough incline ($\mu=0.3$) angled at 42° above the horizontal by a force of $F=270 N$ parallel to the incline. The box rises vertically in the air, measured from the ground, by $\Delta y=$ $2 m$ as shown on the right.

1. Through what distance along the incline was the box pushed?

$$
\sin \theta=\frac{\Delta y}{\Delta x} \rightarrow \Delta x=\frac{\Delta y}{\sin \theta}=\frac{2 m}{\sin 42}=3 m
$$

2. How much work was done on box, by all of the forces that act on the box, if the incline is $2 m$ high?

$$
\begin{aligned}
& W_{\text {net }}=F_{w x} \Delta x \cos 180+F \Delta x \cos 0+F_{f r} \Delta x \cos 180 \\
& W_{\text {net }}=-m g \sin \theta \Delta x+F \Delta x-\mu F_{N} \Delta x=[-m g \sin \theta+F-\mu m g \cos \theta] \Delta x \\
& W_{\text {net }}=\left[-10 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{s^{2}} \sin 42+270 \mathrm{~N}-0.3 \times 10 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cos 42\right] \times 3 \mathrm{~m}=547.5 \mathrm{~J}
\end{aligned}
$$

3. If the box starts from rest at the bottom of the incline, what will be the speed of the box at the top of the incline?

$$
\begin{gathered}
W_{n e t}=\Delta K=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m v_{f}^{2} \rightarrow v_{f}=\sqrt{\frac{2 W_{n e t}}{m}} \\
v_{f}=\sqrt{\frac{2 W_{n e t}}{m}}=\sqrt{\frac{2 \times 547.5 \mathrm{~J}}{10 \mathrm{~kg}}}=10.5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Suppose that at the top of the incline the ground becomes horizontal and just to the left of the top of the incline is a 3 m tall vertical cliff. The person who pushed the box up the incline now ties a light rope to the box and passes the rope over a massless pulley. The person applies a $F=110 \mathrm{~N}$ force to the box at rest on the ground lifting it vertically 3 m as shown below.
4. What was the work done on the box by the person lifting it?

$$
W_{\text {person }}=F \Delta y \cos 0=F \Delta y=110 \mathrm{~N} \times 3 \mathrm{~m}=330 \mathrm{~J}
$$

5. What is the speed of the box when it rises $3 m$, starting from rest?

$$
\begin{aligned}
& W_{\text {net }}=F_{\text {person }} \Delta y \cos 0+F_{W} \Delta y \cos 180=F_{\text {person }} \Delta y-F_{W} \Delta y \\
& W_{\text {net }}=\left[F_{\text {person }}-F_{W}\right] \Delta y=\left[F_{\text {person }}-m g\right] \Delta y=\left[110 \mathrm{~N}-10 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right] \times 3 \mathrm{~m}=294 \mathrm{~J} \\
& W_{\text {net }}=\Delta K=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m v_{f}^{2} \rightarrow v_{f}=\sqrt{\frac{2 W_{\text {net }}}{m}}=\sqrt{\frac{2 \times 294 \mathrm{~J}}{10 \mathrm{~kg}}}=2.7 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Physics 110 Formulas

Motion
$\Delta \mathrm{x}=x_{f}-x_{i} \quad v_{\text {avg }}=\frac{\Delta x}{\Delta t} \quad a_{\text {avg }}=\frac{\Delta v}{\Delta t}$

Equations of Motion
displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} y\end{array}\right.$

Uniform Circular Motion
$F_{r}=m a_{r}=m \frac{v^{2}}{r} ; \quad a_{r}=\frac{v^{2}}{r}$
$v=\frac{2 r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Vectors
magnitude of a vector: $v=|\vec{v}|=\sqrt{v_{x}{ }^{2}+v_{y}^{2}}$
direction of a vector: $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Useful Constants

$$
\begin{array}{rlrlrl}
g & =9.8 \mathrm{~m} / \mathrm{s}^{2} & G=6.67 & 10^{11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}} \\
N_{A} & =6.02 & 10^{23} \text { atoms } / \text { mole } & k_{B} & =1.38 \quad 10^{23} \mathrm{~J} / \mathrm{K} \\
& =5.67 & 10^{8} \mathrm{~W} / \mathrm{m}^{2} K^{4} & v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \quad t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=k \vec{x}$
$F_{f}=F_{N}$

Work/Energy

$$
K_{t}=\frac{1}{2} m v^{2}
$$

$$
K_{r}=\frac{1}{2} I^{2}
$$

$$
U_{g}=m g h
$$

$$
U_{S}=\frac{1}{2} k x^{2}
$$

$$
W_{T}=F d C o s=E_{T}
$$

$$
W_{R}=\quad=E_{R}
$$

$$
\hat{W_{n e t}}=W_{R}+\hat{W_{T}}=E_{R}+E_{T}
$$

$$
E_{R}+E_{T}+U_{g}+U_{S}=0
$$

$$
\begin{aligned}
& E_{R}+E_{T}+U_{g}+U_{S}=0 \\
& E_{R}+E_{T}+U_{g}+U_{S}=\quad E_{\text {diss }} \quad P_{C}=\frac{Q}{t}=\frac{k A}{L} T
\end{aligned}
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: \nu=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound

$$
\begin{aligned}
v & =f=(331+0.6 T) \frac{\mathrm{m}}{\mathrm{~s}} \\
& =10 \log \frac{I}{I_{0}} ; I_{o}=1 \quad 10^{12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
\end{aligned}
$$

$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Heat
$T_{C}=\frac{5}{9}\left[\begin{array}{ll}T_{F} & 32\end{array}\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\quad T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \quad T)$
$V_{\text {new }}=V_{\text {old }}(1+T):=3$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$Q=m c T$

$$
P_{R}=\frac{Q}{T}=A T^{4}
$$

$$
U=Q \quad W
$$

Simple Harmonic Motion/Waves

$$
\begin{aligned}
& =2 f=\frac{2}{T} \\
& T_{S}=2 \sqrt{\frac{m}{k}} \\
& T_{P}=2 \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1 \frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}} \\
& x(t)=A \sin \left(\frac{2 t}{T}\right) \\
& v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 t}{T}\right) \\
& a(t)=A \frac{k}{m} \sin \left(\frac{2 t}{T}\right) \\
& v=f=\sqrt{\frac{F_{T}}{2}} \\
& f_{n}=n f_{1}=n \frac{v}{2 L} \\
& I=2^{2} f^{2} \quad v A^{2}
\end{aligned}
$$

