Name \qquad
Physics 110 Quiz \#3, October 11, 2013
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A remote controlled airplane has a mass of 1.5 kg . It is attached to a 2.0 m long string (you're holding the other end) and the plane is flown in a horizontal circle at a constant speed. The string makes a 20° angle with respect to the vertical and the plane takes 1.5 s to complete one circular orbit. The airflow over the wings of the plane generates a lifting force F_{L} that is always perpendicular to the wings of the plane.

1. What is the lifting force F_{L} generated by the wings?

$$
\begin{aligned}
& \sum F_{x}: F_{T} \sin \theta=m a_{x}=m \frac{v^{2}}{r}=m \frac{\left(\frac{2 \pi r}{T}\right)^{2}}{r}=\frac{4 \pi^{2} r m}{T^{2}}=\frac{4 \pi^{2}(L \sin \theta) m}{T^{2}} \rightarrow F_{T}=\frac{4 \pi^{2} L m}{T^{2}} \\
& \sum F_{y}: F_{L}-F_{W}-F_{T} \cos \theta=m a_{y}=0 \rightarrow F_{L}=F_{W}+F_{T} \cos \theta=\left(1.5 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)+52.6 \mathrm{~N}=64.2 \mathrm{~N}
\end{aligned}
$$

directed vertically upwards from the wings.
2. What is the tension force F_{T} in the string?
$F_{T}=\frac{4 \pi^{2} m L}{T^{2}}=\frac{4 \pi^{2}(1.5 \mathrm{~kg})(2 m)}{(1.5 s)^{2}}=52.6 \mathrm{~N}$ directed along the string away from the plane.
3. Suppose that the angle that the string makes with the vertical is constant and that the plane is able to fly at a speed that is greater than that of the initial problem. In this case
(a.) $F_{L} \uparrow$ and $F_{T} \uparrow$.
b. $\quad F_{L} \downarrow$ and $F_{T} \uparrow$.
c. $\quad F_{L} \uparrow$ and $F_{T} \downarrow$.
d. $\quad F_{L} \downarrow$ and $F_{T} \downarrow$.

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathrm{y}$ or \mathbf{z}-directions

$$
\begin{aligned}
& r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2} \\
& v_{f r}=v_{0 r}+a_{r} t \\
& v_{f r}^{2}=v_{0 r}^{2}+2 a_{r} \Delta r
\end{aligned}
$$

Vectors

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$\begin{array}{clcl}r & \text { Circles } & \text { Triangles } & \text { Spheres } \\ F_{r}=m a_{r}=m \frac{v^{2}}{r} & C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2}\end{array}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry/Algebra
$A=\pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$
Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
magnitude of avector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4}
\end{aligned} v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s} .
$$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$

Sound
$v=f \lambda=(331+0.6 T) \frac{\mathrm{m}}{\mathrm{s}}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Work/Energy
Heat
$K_{t}=\frac{1}{2} m v^{2}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{\text {net }}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }} \quad P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$

$$
\Delta U=\Delta Q-\Delta W
$$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
Simple Harmonic Motion/Waves

$$
x(t)=x_{\max } \sin (\omega t) \text { or } x_{\max } \cos (\omega t)
$$

$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

$$
\begin{aligned}
& \omega=\sqrt{\frac{k}{m}}=2 \pi f=\frac{2 \pi}{T} \\
& T_{S}=2 \pi \sqrt{\frac{m}{k}} \\
& T_{P}=2 \pi \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
v(t)=v_{\max } \cos (\omega t) \text { or }-v_{\max } \sin (\omega t)
$$

$$
a(t)=-a_{\max } \sin (\omega t) \text { or }-a_{\max } \cos (\omega t)
$$

$$
v_{\max }=\omega x_{\max } ; \quad a_{\max }=\omega^{2} x_{\max }
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$$
I=2 \pi^{2} f^{2} \rho v A^{2}
$$

