Name \qquad
Physics 110 Quiz \#4, October 16, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A block of mass $m_{1}=2 \mathrm{~kg}$ is tied by a light rope to a sphere of mass $m_{2}=4 \mathrm{~kg}$. The ramp is inclined at angle $\theta=42^{\circ}$ measured with respect to the horizontal.

1. If the 4 kg sphere is released from rest and is allowed to fall through a distance $d=0.25 \mathrm{~m}$, what is the speed of the sphere if the ramp is considered frictionless?

$$
\begin{aligned}
& \Delta E=\Delta K_{1}+\Delta U_{g 1}+\Delta K_{2}+\Delta U_{g 2}=0 \\
& \frac{1}{2} m_{1} v_{1 f}^{2}+m_{1} g y_{1 f}+\frac{1}{2} m_{2} v_{2 f}^{2}-m_{2} g y_{2 f}=0 \\
& \frac{1}{2}\left(m_{1}+m_{2}\right) v_{f}^{2}=m_{2} g d-m_{1} g d \sin \theta \\
& v_{f}=\sqrt{\frac{2\left(m_{2}-m_{1} \sin \theta\right) g d}{m_{1}+m_{2}}} \\
& v_{f}=\sqrt{\frac{2(4 k g-2 k g \sin 42) \times 9.8 \frac{\mathrm{~m}}{s^{2}} \times 0.25 \mathrm{~m}}{2 k g+4 k g}}=1.47 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

2. Suppose instead that the 4 kg sphere were again released from rest and is allowed to fall through a distance $d=0.25 \mathrm{~m}$ but this time the ramp is not frictionless. If the speed of the sphere is $v=1.2 \frac{\mathrm{~m}}{\mathrm{~s}}$, what is the coefficient of friction between the block and the ramp?

$$
\begin{aligned}
& \Delta E=\Delta K_{1}+\Delta U_{g 1}+\Delta K_{2}+\Delta U_{g 2}=W_{f r} \\
& \frac{1}{2} m_{1} v_{1 f}^{2}+m_{1} g y_{1 f}+\frac{1}{2} m_{2} v_{2 f}^{2}-m_{2} g y_{2 f}=-\mu\left(m_{1} g \cos \theta\right) d \\
& \mu=-\frac{\frac{1}{2}\left(m_{1}+m_{2}\right) v_{f}^{2}-m_{2} g d+m_{1} g d \sin \theta}{m_{1} g d \cos \theta} \\
& \mu=-\frac{\frac{1}{2}(2 \mathrm{~kg}+4 \mathrm{~kg})\left(1.2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+(2 \mathrm{~kg} \sin 42-4 \mathrm{~kg}) \times 9.8 \frac{\mathrm{~m}}{s^{2}} \times 0.25 \mathrm{~m}}{2 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{s^{2}} \times 0.25 \mathrm{~m} \cos 42} \\
& \mu=0.6
\end{aligned}
$$

3. Which of the following gives the change in gravitational potential energy of the $m=$ 1 kg block compared to the $M=4 \mathrm{~kg}$ sphere?
a. $\Delta U_{g, m}>\Delta U_{g, M}$.
b. $\Delta U_{g, m}=\Delta U_{g, M}$.
c. $\Delta U_{g, m}<\Delta U_{g, M}$.
d. The change in gravitational energy cannot be determined from the information given.

A spring of stiffness k is used in a separate experiment. To determine the stiffness of the spring, the spring is initially suspended vertically, and various masses are hung and the corresponding stretch of the spring from equilibrium is measured. A plot of the mass added to the spring versus the stretch of the spring is shown below.
4. What is the stiffness k of the spring?

$$
\begin{aligned}
& F_{s}-F_{w}=m a_{y}=0 \\
& k y=m g \rightarrow m=\frac{k}{g} y \\
& \frac{k}{g}=0.91 \frac{\mathrm{~kg}}{\mathrm{~m}} \rightarrow k=0.91 \frac{\mathrm{~kg}}{\mathrm{~m}} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=8.9 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{aligned}
$$

5. Suppose that the spring is laid horizontal and the 2 kg mass is attached to the spring at its equilibrium length. The surface is frictionless and the 2 kg mass is pulled out to a distance of 0.75 m from equilibrium and released from rest. What is the speed of the mass when the spring returns to its equilibrium length?

$$
\Delta E=\Delta K+\Delta U_{s} \rightarrow 0=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} k x_{i}^{2} \rightarrow v_{f}=\sqrt{\frac{k}{m}} x_{i}=\sqrt{\frac{8.9 \frac{N}{m}}{2 k g}} \times 0.75 m=1.6 \frac{\mathrm{~m}}{s}
$$

Physics 110 Formulas

Motion
$\Delta \mathrm{x}=x_{f}-x_{i} \quad v_{\text {avg }}=\frac{\Delta x}{\Delta t} \quad a_{\text {avg }}=\frac{\Delta v}{\Delta t}$

Equations of Motion
displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} y\end{array}\right.$

Uniform Circular Motion
$F_{r}=m a_{r}=m \frac{v^{2}}{r} ; \quad a_{r}=\frac{v^{2}}{r}$
$v=\frac{2 r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Vectors
magnitude of a vector: $v=|\vec{v}|=\sqrt{v_{x}{ }^{2}+v_{y}^{2}}$
direction of a vector: $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Useful Constants

$$
\begin{array}{rlrlrl}
g & =9.8 \mathrm{~m} / \mathrm{s}^{2} & G=6.67 & 10^{11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
N_{A} & =6.02 & 10^{23} \text { atoms } / \text { mole } & k_{B}=1.38 \quad 10^{23} \mathrm{~J} / \mathrm{K} \\
& =5.67 \quad 10^{8} \mathrm{~W} / \mathrm{m}^{2} K^{4} & v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \quad t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=k \vec{x}$
$F_{f}=F_{N}$

Work/Energy

$$
K_{t}=\frac{1}{2} m v^{2}
$$

$$
K_{r}=\frac{1}{2} I^{2}
$$

$$
U_{g}=m g h
$$

$$
U_{S}=\frac{1}{2} k x^{2}
$$

$$
W_{T}=F d \operatorname{Cos}=E_{T}
$$

$$
W_{R}==E_{R}
$$

$$
\hat{W_{n e t}}=W_{R}+\hat{W_{T}}=E_{R}+E_{T}
$$

$$
E_{R}+E_{T}+U_{g}+U_{S}=0
$$

$$
\begin{aligned}
& E_{R}+E_{T}+U_{g}+U_{S}=0 \\
& E_{R}+E_{T}+U_{g}+U_{S}=\quad E_{\text {diss }} \quad P_{C}=\frac{Q}{t}=\frac{k A}{L} T
\end{aligned}
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: \nu=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound

$$
\begin{aligned}
v & =f=(331+0.6 T) \frac{\mathrm{m}}{s} \\
& =10 \log \frac{I}{I_{0}} ; I_{o}=1 \quad 10^{12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
\end{aligned}
$$

$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Heat
$T_{C}=\frac{5}{9}\left[\begin{array}{ll}T_{F} & 32\end{array}\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\quad T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \quad T)$
$V_{\text {new }}=V_{\text {old }}(1+T):=3$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$Q=m c T$

$$
P_{R}=\frac{Q}{T}=A T^{4}
$$

$$
U=Q \quad W
$$

Simple Harmonic Motion/Waves

$$
\begin{aligned}
& =2 f=\frac{2}{T} \\
& T_{S}=2 \sqrt{\frac{m}{k}} \\
& T_{P}=2 \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1 \frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}} \\
& x(t)=A \sin \left(\frac{2 t}{T}\right) \\
& v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 t}{T}\right) \\
& a(t)=A \frac{k}{m} \sin \left(\frac{2 t}{T}\right) \\
& v=f=\sqrt{\frac{F_{T}}{}} \\
& f_{n}=n f_{1}=n \frac{v}{2 L} \\
& I=2^{2} f^{2} v A^{2}
\end{aligned}
$$

