Name
Physics 110 Quiz \#4, May 1, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Consider a horizontal spring of stiffness $k=87 \frac{\mathrm{~N}}{\mathrm{~m}}$ attached to a $m=1.5 \mathrm{~kg}$ block at one end and a wall at the other. The spring is compressed by an amount $|x|=20 \mathrm{~cm}$ from its equilibrium (unstretched) length, x_{o}.

a. If the mass is released from rest, how much work was done on the mass by the spring as the spring uncompresses and returns to its equilibrium length

Taking $x_{f}=x_{0}=0 m$ the work done by the spring on the mass:
$W_{s}=-\Delta U_{s}=-\left(\frac{1}{2} k x_{f}^{2}-\frac{1}{2} k x_{i}^{2}\right)=\frac{1}{2} k x_{i}^{2}=\frac{1}{2} \times 87 \frac{N}{m}(0.2 m)^{2}=1.74 J$
b. Suppose the mass loses contact with the spring when the spring is at its equilibrium length. Using the work-kinetic energy theorem, what is the sped of the mass when it loses contact with the spring?

Taking $v_{i x}=0 \frac{m}{s}$ the speed of the mass:

$$
W_{s}=-\Delta U_{s}=\Delta K_{m}=\frac{1}{2} m v_{x f}^{2}-\frac{1}{2} m v_{i x}^{2} \rightarrow v_{f x}=\sqrt{\frac{2 W_{s}}{m}}=\sqrt{\frac{2 \times 1.74 \mathrm{~J}}{1.5 \mathrm{~kg}}}=1.52 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

c. The mass slides along the horizontal surface and at some point, it encounters a ramp inclined at an angle of 41° measured with respect to the horizontal. There is friction between the block and the ramp with coefficient of friction $\mu=0.5$.
What is the total work done on the
 block by all outside forces bringing the mass to rest?

Taking $v_{f x}=0 \frac{m}{s}$ the total work done by the work-kinetic energy theorem:

$$
W_{n e t, m}=\Delta K_{m}=\frac{1}{2} m v_{x f}^{2}-\frac{1}{2} m v_{i x}^{2}=-\frac{1}{2} m v_{i x}^{2}=-\frac{1}{2} \times 1.5 \mathrm{~kg}\left(1.52 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=-1.74 \mathrm{~J}
$$

d. How far along the ramp, d, does the block slide before coming to rest?

$$
\begin{aligned}
& W_{n e t, m}=W_{F_{N}}+W_{F_{W y}}+W_{F_{w x}}+W_{F_{f r}} \\
& W_{n e t, m}=F_{N} d \cos 90+F_{W y} d \cos 90+F_{W x} d \cos 180+F_{f r} d \cos 180 \\
& W_{n e t, m}=0+0-(m \sin \theta) d-(\mu m g \cos \theta) d=-1.5 \mathrm{~kg} \times 9.8 \frac{m}{s^{2}}(\sin 41+0.5 \cos 41) d \\
& W_{n e t, m}=-1.74 J=-15.2 d \rightarrow d=0.11 \mathrm{~m}
\end{aligned}
$$

e. Suppose that after stopping momentarily on the ramp, the block slides back down the ramp again. Which of the following would give the net work done by friction on the block as it slid distance d up along the ramp and distance d back down along the ramp?

1. $W_{f r}=0 J$.
2. $W_{f r}=\mu m g \sin \theta$
3. $W_{f r}=-\mu m g d \sin \theta$
4. $W_{f r}=2 \mu m g d \cos \theta$
5. $W_{f r}=-2 \mu m g d \cos \theta$

Physics 110 Formulas

Motion
$\Delta \mathrm{x}=x_{f}-x_{i} \quad v_{\text {avg }}=\frac{\Delta x}{\Delta t} \quad a_{\text {avg }}=\frac{\Delta v}{\Delta t}$

Equations of Motion
displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \Delta x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y\end{array}\right.$

Uniform Circular Motion
$F_{r}=m a_{r}=m \frac{v^{2}}{r} ; \quad a_{r}=\frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry/Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h$	$A=4 \pi r^{2}$
$A=\pi r^{2}$		$V=\frac{4}{3} \pi r^{3}$
Quadratic equation $: a x^{2}+b x+c=0$,		

whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Vectors
magnitude of a vector: $v=|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector: $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\overrightarrow{F_{s}}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Work/Energy
Useful Constants
$g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11 \mathrm{Nm}^{2}} / \mathrm{kg}^{2}$
$N_{A}=6.02 \times 10^{23}$ atoms $/$ mole $\quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$

Heat

$$
K_{t}=\frac{1}{2} m v^{2}
$$

$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$K_{r}=\frac{1}{2} I \omega^{2}$
$T_{F}=\frac{9}{5} T_{C}+32$
$U_{g}=m g h$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }} \quad P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega_{i}^{2}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound
$v=f \lambda=(331+0.6 T) \frac{\mathrm{m}}{\mathrm{s}}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$
simple Harmonic Motion/Waves

$$
\begin{aligned}
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& T_{S}=2 \pi \sqrt{\frac{m}{k}} \\
& T_{P}=2 \pi \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}} \\
& x(t)=A \sin \left(\frac{2 \pi t}{T}\right) \\
& v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi t}{T}\right) \\
& a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi t}{T}\right) \\
& v=f \lambda=\sqrt{\frac{F_{T}}{\mu}} \\
& f_{n}=n f_{1}=n \frac{v}{2 L} \\
& I=2 \pi^{2} f^{2} \rho v A^{2}
\end{aligned}
$$

