Name \qquad
Physics 110 Quiz \#4, April 30, 2021
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A block of mass $m=1 \mathrm{~kg}$ is connected to a sphere of mass $M=2 \mathrm{~kg}$ by a very light cord that passes over a frictionless and massless pulley as shown on the right. The system of masses is released from rest and the sphere falls through a height $h=0.75 \mathrm{~m}$.

1. What is the expression for the net work done on the sphere of mass M as it falls through height h ? Your answer should contain only symbols and no numbers.

Work done by the weight:

$$
\begin{aligned}
& W_{F_{W, M}}=F_{W} \Delta y \cos \phi=M g \Delta y \cos 0=M g h \\
& W_{F_{T}}=F_{T} \Delta y \cos \phi=F_{T} \Delta y \cos 180=-F_{T} h \\
& W_{n e t, M}=W_{F_{W}}+W_{F_{T}}=M g h-F_{T} h
\end{aligned}
$$

$$
\text { Work done by the tension: } \quad W_{F_{T}}=F_{T} \Delta y \cos \phi=F_{T} \Delta y \cos 180=-F_{T} h
$$

Net work done on M :
2. What is the expression for the net work done on the block of mass m as it slides up the ramp? Assume that the ramp is frictionless, and your answer should contain only symbols and no numbers.

Work done by the weight: Work done by the tension:

$$
\text { Net work done on } m \text { : }
$$

$$
\begin{aligned}
& W_{F_{W, m}}=F_{W} \Delta x \cos \phi=-m g \Delta x \cos (90-\theta)=-m g h \sin \theta \\
& W_{F_{T}}=F_{T} \Delta x \cos \phi=F_{T} \Delta x \cos 0=F_{T} h \\
& W_{\text {net }, m}=W_{F_{W, m}}+W_{F_{T}}=-m g h \sin \theta+F_{T} h
\end{aligned}
$$

3. Using the information given, what was the net work done on the system of masses (m and $M)$? You will get a number for this part.

$$
\begin{aligned}
& W_{\text {net }}=W_{\text {net }, M}+W_{\text {net }, m}=M g h-F_{T} h-m g h \sin \theta+F_{T} h=M g h-m g h \sin \theta \\
& W_{\text {net }}=(M-m \sin \theta) g h=(2 k g-1 \mathrm{~kg} \sin 20) \times 9.8 \frac{\mathrm{~m}}{s^{2}} \times 0.75 \mathrm{~m}=12.2 \mathrm{~J}
\end{aligned}
$$

4. What is the final speed of the system of masses (m and M) if both are released from rest? Hint: Each mass experiences a change in kinetic energy.
$W_{\text {net }}=\Delta K_{m}+\Delta K_{M}=\left(\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}\right)+\left(\frac{1}{2} M v_{f}^{2}-\frac{1}{2} M v_{i}^{2}\right)=\frac{1}{2}(m+M) v_{f}^{2}$
$v_{f}=\sqrt{\frac{2 W}{(m+M)}}=\sqrt{\frac{2 \times 12.2 \mathrm{~J}}{3 \mathrm{~kg}}}=2.85 \frac{\mathrm{~m}}{\mathrm{~s}}$
5. In this problem the block of mass m rises and the sphere of mass M falls. The change in gravitational potential energy for the sphere is given by $\Delta U_{g}=-M g h$. Which of the following gives the change in gravitational potential energy of the block of mass m ?
a. $\Delta U_{g}=m g h$.
b. $\Delta U_{g}=\left(\frac{m+M}{m}\right) g h$.
c. $\Delta U_{g}=\left(\frac{m+M}{M}\right) g h$.
d. $\Delta U_{g}=m g h \sin \theta$.
e. None of the above give the correct expression for the gravitational potential energy change for the block of mass m.

Vectors
$v=\sqrt{v_{x}^{2}+v_{y}^{2}}$
$\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

$$
F_{f r}=\mu F_{N}
$$

Motion Definitions
Displacement: $\Delta x=x_{f}-x_{i}$
Average velocity: $v_{\text {avg }}=\frac{\Delta x}{\Delta t}$
Average acceleration: $a_{a v g}=\frac{\Delta v}{\Delta t}$

Equations of Motion

displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \Delta x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y\end{array}\right.$
Rotational Motion Definitions
Angular displacement: $\Delta s=R \Delta \theta$
Angular velocity: $\omega=\frac{\Delta \theta}{\Delta t} \rightarrow v=R \omega$
Angular acceleration: $\alpha=\frac{\Delta \omega}{\Delta t} \rightarrow\left\{\begin{array}{c}a_{t}=r \alpha \\ a_{c}=r \omega^{2}\end{array}\right.$
Rotational Equations of Motion

$$
\begin{aligned}
& \theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2} \\
& \omega_{f}=\omega_{i}+\alpha t \\
& \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta
\end{aligned}
$$

Momentum \& Force
$\vec{p}=m \vec{v} \rightarrow p_{x}=m v_{x} ; p_{y}=m v_{y}$
$\Delta \vec{p}=\vec{F} \Delta t \rightarrow \vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=\frac{d \vec{p}}{d t}=m \vec{a} \rightarrow F_{x}=m a_{x} ; F_{y}=m a_{y}$
$F_{w}=m g$
$F_{s}=-k x$
$F_{G}=G \frac{M_{1} M_{2}}{r^{2}}$
$F_{c}=m a_{c}=m \frac{v^{2}}{R}$
Work \& Energy
$\left\{\begin{array}{c}W_{T}=\int \vec{F} \cdot d \vec{r}=F d r \cos \theta=\Delta K_{T} \\ W_{R}=\int \vec{\tau} \cdot d \vec{\theta}=\tau d \theta=\Delta K_{R}\end{array}\right.$
$W_{\text {net }}=W_{T}+W_{R}=\Delta K_{T}+\Delta K_{R}=-\Delta U$
$K_{T}=\frac{1}{2} m v^{2}$
$K_{R}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g y$
$U_{s}=\frac{1}{2} k x^{2}$
$\Delta E=\Delta E_{R}+\Delta E_{T}$
$\Delta E=\Delta K_{R}+\Delta K_{T}+\Delta U_{g}+\Delta U_{s}=\left\{\begin{array}{c}0 \\ -W_{f r}\end{array}\right.$
Rotational Momentum \& Force

$$
\begin{aligned}
& \vec{\tau}=\vec{r} \times \vec{F} ; \tau=r_{\perp} F=r F_{\perp}=r F \sin \theta \\
& \tau=\frac{\Delta L}{\Delta t}=I \alpha \\
& L=I \omega \\
& \Delta \vec{L}=\vec{\tau} \Delta t \rightarrow \vec{L}_{f}=\vec{L}_{i}+\vec{\tau} \Delta t
\end{aligned}
$$

Fluids
$\rho=\frac{m}{V}$
$P=\frac{F}{A}$
$P_{y}=P_{\text {air }}+\rho g y$
$F_{B}=\rho g V$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$; compressible $A_{1} v_{1}=A_{2} v_{2}$; incompressible
$P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$

Simple Harmonic Motion
$\omega=2 \pi f$
$T_{S}=2 \pi \sqrt{\frac{m}{k}}$
$T_{p}=2 \pi \sqrt{\frac{l}{g}}$

Geometry/Algebra
Circles: $\quad A=\pi r^{2} \quad C=2 \pi r=\pi D$
Spheres: $\quad A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$
Triangles: $\quad A=\frac{1}{2} b h$
Quadratics: $\quad a x^{2}+b x+c=0 \rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Sound
$v_{s}=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{o}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; n=1,2,3, \ldots$ open pipes
$f_{n}=n f_{1}=n \frac{v}{4 L} ; n=1,3,5, \ldots$ closed pipes
Waves
$v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; n=1,2,3, \ldots$
$I=2 \pi^{2} f^{2} \rho v A^{2}$

Equations of Motion for SHM

$$
\begin{aligned}
& x(t)=\left\{\begin{array}{l}
x_{\text {max }} \sin \left(\frac{2 \pi}{T} t\right) \\
x_{\text {max }} \cos \left(\frac{2 \pi}{T} t\right)
\end{array}\right. \\
& v(t)=\left\{\begin{array}{c}
v_{\text {max }} \cos \left(\frac{2 \pi}{T} t\right) \\
-v_{\text {max }} \sin \left(\frac{2 \pi}{T} t\right)
\end{array}\right.
\end{aligned}
$$

$$
a(t)=\left\{\begin{array}{l}
-a_{\max } \sin \left(\frac{2 \pi}{T} t\right) \\
-a_{\max } \cos \left(\frac{2 \pi}{T} t\right)
\end{array}\right.
$$

$$
v= \pm v_{\max } \sqrt{1-\left(\frac{x}{x_{\max }}\right)^{2}}
$$

$v= \pm \omega x_{\max } \sqrt{1-\left(\frac{x}{x_{\max }}\right)^{2}}$

Periodic Table of the Elements

