Name \qquad
Physics 110 Quiz \#5, October 21, 2016
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Two blocks are connected by a light rope that passes around a massive pulley as shown on the right. The pulley has a mass of $M=6 \mathrm{~kg}$, radius of $R=0.45 \mathrm{~m}$, and moment of inertia $I_{p}=\frac{1}{2} M R^{2}$. The block on the left has a mass $m_{1}=75 \mathrm{~kg}$ while the block on the right has mass $m_{2}=65 \mathrm{~kg}$.

1. What is the expression angular acceleration of the system about the axis of the pulley if the left block is released from rest? Choose counterclockwise as the positive direction for the torques.
$\sum \tau: F_{T L} R-F_{T R} R=I \alpha$

$\alpha=\frac{\left(F_{T L}-F_{T R}\right) R}{I}=\frac{2\left(F_{T L}-F_{T R}\right)}{M R}$
2. From free-body diagrams of the forces that act on the blocks m_{1} and m_{2} and using your result for the angular acceleration, what is the acceleration of the block with mass m_{1} ?

The forces on each mass:
m_{1} :
$\sum F_{y:} F_{T L}-m_{1} g=-m_{1} a \rightarrow F_{T L}=m_{1} g-m_{1} a$
m_{2} :
$\sum F_{y:} F_{T R}-m_{2} g=m_{2} a \rightarrow F_{T R}=m_{2} g+m_{2} a$
$\alpha=\frac{a}{R}=\frac{2\left(F_{T L}-F_{T R}\right)}{M R}=\frac{2\left(m_{1} g-m_{1} a-m_{2} g-m_{2} a\right)}{M R}$
$a=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}+M / 2}\right) g=\left(\frac{75 \mathrm{~kg}-65 \mathrm{~kg}}{75 \mathrm{~kg}+65 \mathrm{~kg}+6 \mathrm{~kg} / 2}\right) 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=0.69 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
3. When released from rest, mass m_{1} falls through a distance $h=0.2 m$. How fast is the pulley spinning?
$v_{f}^{2}=v_{i}^{2}+2 a \Delta y=2 a \Delta y$
$v_{f}=\sqrt{2 a \Delta y}=\sqrt{2 \times 0.69 \frac{m}{s^{2}} \times 0.2 \mathrm{~m}}=0.53 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v=R \omega \rightarrow \omega=\frac{v}{R}=\frac{0.53 \frac{\mathrm{~m}}{s}}{0.45 \mathrm{~m}}=1.17 \frac{\mathrm{rad}}{\mathrm{s}}$
4. What is the magnitude of the angular momentum of the pulley about its axis of rotation?

$$
L=I \omega=\left(\frac{1}{2} M R^{2}\right) \omega=0.5 \times 6 \mathrm{~kg} \times(0.45 \mathrm{~m})^{2} \times 1.17 \frac{\mathrm{rad}}{\mathrm{~s}}=0.71 \frac{\mathrm{~kg}^{2}}{\mathrm{~s}}
$$

5. Using energy ideas, when the block is released from rest, determine the speed of the mass m_{2} after it rises through a height of $h=0.2 m$. Assume that there is no friction in the axle that the pulley spins around.

$$
\begin{aligned}
& \Delta E_{\text {system }}=0=\Delta K_{T 1}+\Delta K_{T 2}+\Delta K_{R}+\Delta U_{g 1}+\Delta U_{g 2} \\
& 0=\frac{1}{2} m_{1} v^{2}+\frac{1}{2} m_{2} v^{2}+\frac{1}{2} I \omega^{2}-m_{1} g h+m_{2} g h \\
& 0=\frac{1}{2} m_{1} v^{2}+\frac{1}{2} m_{2} v^{2}+\frac{1}{2}\left(\frac{1}{2} M R^{2}\right)\left(\frac{v}{R}\right)^{2}-m_{1} g h+m_{2} g h \\
& v=\sqrt{\frac{2\left(m_{1}-m_{2}\right) g h}{m_{1}+m_{2}+M / 2}}=\sqrt{\frac{2 \times 9.8 \frac{m}{s^{2}} \times 0.2 m(75 \mathrm{~kg}-65 \mathrm{~kg})}{75 \mathrm{~kg}+65 \mathrm{~kg}+6 \mathrm{~kg} / 2}}=0.52 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathbf{y}$ or \mathbf{z}-directions

$$
\begin{aligned}
& r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2} \\
& v_{f r}=v_{0 r}+a_{r} t \\
& v_{f r}^{2}=v_{0 r}^{2}+2 a_{r} \Delta r
\end{aligned}
$$

$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r} \quad \begin{array}{llc}\text { Circles } & \text { Triangles } & \text { Spheres } \\ C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ A=\pi r^{2} & & V=\frac{4}{3} \pi r^{3}\end{array}$

$$
v=\frac{2 \pi r}{T}
$$

$$
F_{G}=G \frac{m_{1} m_{2}}{r^{2}}
$$

Geometry /Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h$	$A=4 \pi r^{2}$
$A=\pi r^{2}$		$V=\frac{4}{3} \pi r^{3}$

Quadratic equation : $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Vectors
magnitude of avector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Useful Constants

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
Work/Energy
$g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11 \mathrm{Nm}^{2}} / \mathrm{kg}^{2}$
$N_{A}=6.02 \times 10^{23}$ atoms $/$ mole $\quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$K_{t}=\frac{1}{2} m v^{2}$
Heat
$K_{r}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }} \quad P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega_{f}^{2}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

Simple Harmonic Motion/Waves

$$
\begin{aligned}
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& T_{S}=2 \pi \sqrt{\frac{m}{k}} \\
& T_{P}=2 \pi \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
x(t)=A \sin \left(\frac{2 \pi t}{T}\right)
$$

$$
v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi t}{T}\right)
$$

$$
a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi t}{T}\right)
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$$
I=2 \pi^{2} f^{2} \rho v A^{2}
$$

