Name \qquad
Physics 110 Quiz \#5, October 25, 2019
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A $M=0.5 \mathrm{~kg}$ yo-yo has an outer radius (R) that is six times larger than the radius of the axle (r) through its center around which a light string is wrapped. That is $R=6 r$. The yo-yo is released from rest and the center of the axle through the center of the yo-yo falls through a distance of 1.0 m .
a. What is the translational acceleration of the system?

Hint: $\quad I=\frac{1}{2} M R^{2}$ for the yo-yo.

$$
\begin{array}{ll}
\sum \tau: & r F_{T}=I \alpha \rightarrow F_{T}=\frac{I \alpha}{r}=\frac{\frac{1}{2} M R^{2}\left(\frac{a}{r}\right)}{r}=\frac{1}{2} M\left(\frac{R^{2}}{r^{2}}\right) a \\
\sum F_{y}: & F_{T}-M g=-M a \rightarrow F_{T}=M g-M a
\end{array}
$$

$$
F_{T}=\frac{1}{2} M\left(\frac{R^{2}}{r^{2}}\right) a=M g-M a \rightarrow a=\left(\frac{1}{\frac{R^{2}}{2 r^{2}}+1}\right) g
$$

$$
\therefore a=\left(\frac{1}{\frac{R^{2}}{2 r^{2}}+1}\right) g=\left(\frac{1}{\frac{36 r^{2}}{2 r^{2}}+1}\right) \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=0.52 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

b. What is the magnitude of the tension force in the string?

$$
F_{T}=M g-M a=0.5 \mathrm{~kg} \times\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}-0.52 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=4.64 \mathrm{~N}
$$

c. What is the angular speed of the yo-yo, in revolutions per second, after the yo-yo has fallen through a distance of 1.0 m from rest? Assume that $r=2 \mathrm{~cm}$ and do this problem using one of your equations of motion.

$$
\begin{aligned}
& \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta \\
& \alpha=\frac{a}{r}=\frac{0.52 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{0.02 \mathrm{~m}}=26 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} \\
& \Delta s=r \Delta \theta \rightarrow \Delta \theta=\frac{\Delta s}{r}=\frac{1 \mathrm{~m}}{0.02 \mathrm{~m}}=50 \mathrm{rad} \\
& \omega_{f}=\sqrt{\omega_{i}^{2}+2 \alpha \Delta \theta}=\sqrt{2 \alpha \Delta \theta}=\sqrt{2 \times 26 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} \times 50 \mathrm{rad}}=51 \frac{\mathrm{rad}}{\mathrm{~s}} \\
& \omega_{f}=51 \frac{\mathrm{rad}}{\mathrm{~s}} \times \frac{1 \mathrm{rev}}{2 \pi r a d}=8.1 \frac{\mathrm{rev}}{\mathrm{~s}}
\end{aligned}
$$

d. Taking the system to be the yo-yo and the rest of the world, determine the rotational speed of the yo-yo after the yo-yo has fallen a distance of 1.0 m by using energy ideas.

$$
\begin{aligned}
& \Delta E=0=\Delta K_{T}+\Delta K_{R}+\Delta_{g}+\Delta U_{s}=\left(\frac{1}{2} M v_{f}^{2}-\frac{1}{2} M v_{i}^{2}\right)+\left(\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}\right)+\left(M g y_{f}-M g y_{i}\right) \\
& 0=\frac{1}{2} M v_{f}^{2}+\frac{1}{2} I \omega_{f}^{2}-M g y_{i} \\
& M g y_{i}=\frac{1}{2} M\left(r \omega_{f}\right)^{2}+\frac{1}{2}\left(\frac{1}{2} M R^{2}\right) \omega_{f}^{2}=\frac{1}{2} M\left(r^{2}+R^{2}\right) \omega_{f}^{2} \\
& \omega_{f}=\sqrt{\frac{2 g y_{i}}{r^{2}+R^{2}}}=\sqrt{\frac{2 \times 9.8 \frac{\mathrm{~s}}{s^{2}} \times 1 m}{(0.02 \mathrm{~m})^{2}+\frac{1}{2}(6 \times 0.02 \mathrm{~m})^{2}}}=50.8 \frac{\mathrm{rad}}{\mathrm{~s}} \times \frac{1 \mathrm{rev}}{2 \pi \mathrm{rad}}=8.1 \frac{\mathrm{rad}}{\mathrm{~s}}
\end{aligned}
$$

Physics 110 Formulas

Equations of Motion
displacement: $\left\{\begin{array}{c}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \Delta x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y\end{array}\right.$

Vectors
magnitude of a vector: $v=|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector: $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Uniform Circular Motion
$F_{r}=m a_{r}=m \frac{v^{2}}{r} ; \quad a_{r}=\frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry /Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h$	$A=4 \pi r^{2}$
$A=\pi r^{2}$		$V=\frac{4}{3} \pi r^{3}$

Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \cdot d t$
$\vec{F}=m \vec{a}=\frac{d \vec{p}}{d t}$
$\vec{F}_{s}=-k \vec{x}$
$\left|\vec{F}_{f r}\right|=\mu\left|\vec{F}_{N}\right|$

Work/Energy
$K_{T}=\frac{1}{2} m v^{2}$
$K_{R}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F \Delta x \operatorname{Cos} \theta=\Delta K_{T}$
$W_{R}=\tau \theta=\Delta K_{R}$
$W_{n e t}=W_{R}+W_{T}=\Delta K_{R}+\Delta K_{T}$
$\Delta K_{R}+\Delta K_{T}+\Delta U_{g}+\Delta U_{S}=\Delta E_{\text {system }}=0$
$\Delta K_{R}+\Delta K_{T}+\Delta U_{g}+\Delta U_{S}=\Delta E_{s y s t e m}=W_{f r}=-F_{f r} \Delta x$

Rotational Motion
Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$
$a_{r}=r \omega^{2}$
Sound
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$

Useful Constants

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23 \mathrm{~J} / \mathrm{K}} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Simple Harmonic Motion/Waves

$\omega=2 \pi f=\frac{2 \pi}{T}$
$T_{S}=2 \pi \sqrt{\frac{m}{k}}$
$T_{P}=2 \pi \sqrt{\frac{l}{g}}$
$v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}$
$x(t)=A \sin \left(\frac{2 \pi t}{T}\right)$
$v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi t}{T}\right)$
$a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi t}{T}\right)$
$v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}$
$f_{n}=n f_{1}=n \frac{v}{2 L}$
$I=2 \pi^{2} f^{2} \rho v A^{2}$

