Name
Physics 110 Quiz \#5, May 8, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A small steel ball of mass $m_{b}=50 g$ is shot from a horizontal launcher in to a block of wood of mass $M=$ 5 kg , initially at rest.
a. To launch the ball from the launcher, the ball is compressed against a horizontal spring of stiffness k by an amount $|x|=10 \mathrm{~cm}$ (measured from the equilibrium position of the spring.) If the ball is launched from rest and loses contact with the spring when the spring returns to its equilibrium length with a speed of $v_{b}=300 \frac{\mathrm{~m}}{\mathrm{~s}}$, what is the stiffness k of the
launcher
 spring?

Since the ball is fired horizontally $\Delta U_{g}=0$. The initial stored elastic potential energy is transformed to kinetic energy.
$\Delta E=\Delta K+\Delta U_{g}+\Delta U_{s}=0$
$\Delta E=\left(\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}\right)+\left(\frac{1}{2} k x_{f}^{2}-\frac{1}{2} k x_{i}^{2}\right)=0$
$k=\frac{m v_{f}^{2}}{x_{i}^{2}}=\frac{0.05 \mathrm{~kg}\left(300 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{(0.1 \mathrm{~m})^{2}}=4.5 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}}$
b. After launch, the ball strikes the stationary block and imbeds itself in the block. What is the speed of the ball \& block after the bullet comes to rest in the block?

We have a collision and we apply conservation of momentum.

$$
\begin{aligned}
\Delta p_{x} & =p_{f x}-p_{i x}=0 \\
p_{i x} & =p_{f x} \rightarrow m_{b} v_{b}=\left(m_{b}+M\right) V \\
V & =\frac{m_{b}}{m_{b}+M} v_{b}=\frac{0.05 \mathrm{~kg}}{0.05 \mathrm{~kg}+5 \mathrm{~kg}} \times 300 \frac{\mathrm{~m}}{\mathrm{~s}}=2.97 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

c. Suppose that the ball and block are actually located on the top of a frictionless track as shown on the right. What are the speeds of the ball and block at the bottom of the hill (labeled as point B) and the top of the loop-the-loop (labeled as point C)?

$$
\begin{aligned}
& \Delta E_{A B}=\Delta K_{A B}+\Delta U_{g A B}+\Delta U_{s}=0 \\
& \Delta E_{A B}=\left(\frac{1}{2} m_{\text {total }} v_{B}^{2}-\frac{1}{2} m_{\text {total }} v_{A}^{2}\right)+ \\
& \left(m_{\text {total }} g y_{B}-m_{\text {total }} g y_{A}\right)=0 \\
& v_{B}=\sqrt{v_{A}^{2}+2 g y_{a}}=\sqrt{\left(2.97 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+2 \times 9.8 \frac{\mathrm{~m}}{s^{2}} \times 4 m}=9.3 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \Delta E_{B C}=\Delta K_{B C}+\Delta U_{g B C}+\Delta U_{s}=0 \\
& \Delta E_{B C}=\left(\frac{1}{2} m_{\text {total }} v_{C}^{2}-\frac{1}{2} m_{\text {total }} v_{B}^{2}\right)+\left(m_{\text {total }} g y_{C}-m_{\text {total }} g y_{B}\right)=0 \\
& v_{C}=\sqrt{v_{B}^{2}-2 g y_{C}}=\sqrt{\left(9.3 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-2 \times 9.8 \frac{\mathrm{~m}}{s^{2}} \times 2 m}=6.9 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

d. What is the difference between the magnitudes of the reaction forces of the track at point B and point C?

At point B:
$F_{N B}-F_{W}=0 \rightarrow F_{N B}=m_{\text {total }} g=5.05 \mathrm{~kg} \times 9.8 \frac{m}{s^{2}}=49.5 \mathrm{~N}$
At point C:

$$
\begin{aligned}
& -F_{N C}-F_{W}=-F_{N}-m_{\text {total }} g=-m_{\text {total }} \frac{v_{C}^{2}}{R} \\
& F_{N C}=m_{\text {total }} \frac{v_{C}^{2}}{R}-m_{\text {total }} g=(0.05 \mathrm{~kg}+5 \mathrm{~kg})\left[\frac{\left(6.9 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{1 \mathrm{~m}}-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right]=190.1 \mathrm{~N}
\end{aligned}
$$

The difference is $\Delta F=F_{N B}-F_{N C}=-140.6 N$
e. Suppose that the entire track was not frictionless and further that you measure the speeds at the top of the hill (labeled point A) and at the top of the loop-the-loop (labeled point C). Can you determine the work done by friction between points A and C? You will earn zero credit for simply saying yes or no. You need to explain in complete sentences why you think you can or why you think you cannot determine the work done by friction between points A and C . There is no actual calculation required for this question.

Yes, you can determine the work done by friction since you know the initial and final speeds of the system and the heights through which the masses fell. Thus $\Delta E=W_{f r}=\Delta K+\Delta U_{g}$. The one thing you could not determine is the frictional force since we don't know the actual path taken by the masses.

Physics 110 Formulas

Motion
$\Delta \mathrm{x}=x_{f}-x_{i} \quad v_{\text {avg }}=\frac{\Delta x}{\Delta t} \quad a_{\text {avg }}=\frac{\Delta v}{\Delta t}$

Equations of Motion
displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \Delta x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y\end{array}\right.$

Uniform Circular Motion
$F_{r}=m a_{r}=m \frac{v^{2}}{r} ; \quad a_{r}=\frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Vectors
magnitude of a vector: $v=|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector: $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Work/Energy

$$
K_{t}=\frac{1}{2} m v^{2}
$$

$$
K_{r}=\frac{1}{2} I \omega^{2}
$$

$$
U_{g}=m g h
$$

$$
U_{S}=\frac{1}{2} k x^{2}
$$

$$
W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}
$$

$$
W_{R}=\tau \theta=\Delta E_{R}
$$

$$
W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}
$$

$$
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0
$$

$$
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }} \quad P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T
$$

$$
P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}
$$

$$
\Delta U=\Delta Q-\Delta W
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega_{i}^{2}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound
$v=f \lambda=(331+0.6 T) \frac{\mathrm{m}}{\mathrm{s}}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Useful Constants

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11 \mathrm{Nm}^{2}} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \mathrm{mole} \quad k_{B}=1.38 \times 10^{-23 \mathrm{~J} / \mathrm{K}} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

