Name

Physics 110 Quiz #5, May 6, 2022

Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. A block of mass m = 2kg is placed against an unstretched spring of stiffness $k_g = 52000\frac{N}{m}$. The mass and spring are pushed along the surface of the frictionless ramp a distance $d_{ramp} = 0.25m$. The mass is released from rest and the spring uncompresses. When the spring returns to its original length the mass is launched from the end of the spring at an angle of, $\theta = 30^0$ measured with respect to the horizontal as shown below. Using energy ideas, what is the launch speed of the mass?

$$\begin{split} \Delta E &= 0 = \Delta K + \Delta U_g + \Delta U_s \\ 0 &= \left(\frac{1}{2}mv_f^2 - 0\right) + \left(mgy_f - 0\right) + \left(0 - \frac{1}{2}kx_i^2\right) \\ v_f &= \sqrt{\frac{k}{m}x_i^2 - mgy_f} = \sqrt{\frac{k}{m}x_i^2 - 2gd_{ramp}\sin\theta} \\ v_f &= \sqrt{\frac{52000\frac{N}{m}}{2kg}}(0.25m)^2 - 2 \times 9.8\frac{m}{s^2} \times 0.25m\sin 30 = 40.3\frac{m}{s} \end{split}$$

2. A horizontal platform is located at a height h above the ground such that the mass m lands on the horizontal platform when the mass m reaches the highest point in its motion. Using energy ideas, what is the height h of the platform above the ground? Assume that the mass m was launched from ground level.

$$\Delta E = 0 = \Delta K + \Delta U_g + \Delta U_s$$

$$0 = \left(\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2\right) + \left(mgy_f - 0\right) \rightarrow y_f = h = \frac{v_i^2 - v_{fx}^2}{2g}$$

$$h = \frac{\left(40.3\frac{m}{s}\right)^2 - \left(40.3\frac{m}{s}\cos 30\right)^2}{2 \times 9.8\frac{m}{s^2}} = 20.7m$$

3. After the mass lands on the horizontal platform, it slides across the horizontal frictionless surface until it collides with a spring of stiffness $k_p = 1600\frac{N}{m}$. How far will the spring have compressed when the mass comes to rest?

$$\begin{split} \Delta E &= 0 = \Delta K + \Delta U_g + \Delta U_s \\ 0 &= \left(\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2\right) + \left(\frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2\right) = -\frac{1}{2}mv_i^2 + \frac{1}{2}kx_f^2 \to x_f = \sqrt{\frac{m}{k}}v_{ix} \\ x_f &= \sqrt{\frac{2kg}{1600\frac{N}{m}}} \times 40.3\frac{m}{s}\cos 30 = 1.23m \end{split}$$

4. Suppose that the horizontal platform was not frictionless, but that friction exists with coefficient of friction $\mu = 0.8$. If the mass slides a distance d = 2m before striking the spring, with what speed with the mass strike the spring?

$$\Delta E = W_{fr} = -\mu mgd = \Delta K$$

-\mumber mgd = $\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \rightarrow v_f = \sqrt{v_{ix}^2 - 2\mu gd}$
 $v_f = \sqrt{\left(40.3\frac{m}{s}\cos 30\right)^2 - \left(2 \times 0.8 \times 9.8\frac{m}{s^2} \times 2m\right)} = 34.4\frac{m}{s}$

5. If friction exists under the spring as well, by how much will the spring compress in this case as the mass comes to rest?

$$\begin{split} \Delta E &= W_{fr} = \Delta K + \Delta U_g + \Delta U_s \\ &-\mu mg x_f = \left(\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2\right) + \left(\frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2\right) = -\frac{1}{2}mv_i^2 + \frac{1}{2}kx_f^2 \\ &\frac{1}{2}kx_f^2 + \mu mg x_f - \frac{1}{2}mv_i^2 = 0 \rightarrow 800x_f^2 + 15.7x_f - 1183.4 = 0 \\ &x_f = \begin{cases} -1.23m \\ 1.20m \end{cases} \rightarrow x_f = 1.20m \end{split}$$

Vectors

 $v = \sqrt{v_x^2 + v_y^2}$ $\phi = \tan^{-1}\left(\frac{v_y}{v_y}\right)$

Motion Definitions

Displacement: $\Delta x = x_f - x_i$ Average velocity: $v_{avg} = \frac{\Delta x}{\Delta t}$ Average acceleration: $a_{avg} = \frac{\Delta v}{\Delta t}$

Equations of Motion

displacement: $\begin{cases}
x_f = x_i + v_{ix}t + \frac{1}{2}a_xt^2 \\
y_f = y_i + v_{iy}t + \frac{1}{2}a_yt^2
\end{cases}$ velocity: $\begin{cases}
v_{fx} = v_{ix} + a_xt \\
v_{fy} = v_{iy} + a_yt
\end{cases}$ time-independent: $\begin{cases}
v_{fx}^2 = v_{ix}^2 + 2a_x\Delta x \\
v_{fy}^2 = v_{iy}^2 + 2a_y\Delta y
\end{cases}$

Rotational Motion Definitions

Angular displacement: $\Delta s = r \Delta \theta$ Angular velocity: $\omega = \frac{\Delta\theta}{\Delta t} \rightarrow v = r\omega$ Angular acceleration: $\alpha = \frac{\Delta \omega}{\Delta t} \rightarrow \begin{cases} a_t = r\alpha \\ a_c = r\omega^2 \end{cases}$

Rotational Equations of Motion

$$\theta_{f} = \theta_{i} + \omega_{i}t + \frac{1}{2}\alpha t^{2}$$
$$\omega_{f} = \omega_{i} + \alpha t$$
$$\omega_{f}^{2} = \omega_{i}^{2} + 2\alpha\Delta\theta$$

Momentum & Force

$$\vec{p} = m\vec{v} \rightarrow p_x = mv_x; \ p_y = mv_y$$

$$\Delta \vec{p} = \vec{F} \Delta t \rightarrow \vec{p}_f = \vec{p}_i + \vec{F} \Delta t$$

$$\vec{F} = \frac{d\vec{p}}{dt} = m\vec{a} \rightarrow F_x = ma_x; \ F_y = ma_y$$

$$F_{fr} = \mu F_N$$

$$F_w = mg$$

$$F_s = -kx$$

$$F_G = G \frac{M_1 M_2}{r^2}$$

$$F_c = ma_c = m \frac{v^2}{R}$$

Work & Energy

$$\begin{cases} W_T = \int \vec{F} \cdot d\vec{r} = F dr \cos \theta = \Delta K_T \\ W_R = \int \vec{\tau} \cdot d\vec{\theta} = \tau d\theta = \Delta K_R \end{cases}$$

$$W_{net} = W_T + W_R = \Delta K_T + \Delta K_R = -\Delta U$$

$$K_{T} = \frac{1}{2}mv^{2}$$

$$K_{R} = \frac{1}{2}I\omega^{2}$$

$$U_{g} = mgy$$

$$U_{s} = \frac{1}{2}kx^{2}$$

$$\Delta E = \Delta E_{R} + \Delta E_{T}$$

$$\Delta E = \Delta K_{R} + \Delta K_{T} + \Delta U_{g} + \Delta U_{s} = \begin{cases} 0\\W_{fr} \end{cases}$$

Rotational Momentum & Force

 $\vec{\tau} = \vec{r} \times \vec{F}; \ \tau = r_{\perp}F = rF_{\perp} = rF\sin\theta$ $\tau = \frac{\Delta L}{\Delta t} = I\alpha$ $L = I\omega$ $\Delta \vec{L} = \vec{\tau} \Delta t \rightarrow \vec{L}_f = \vec{L}_i + \vec{\tau} \Delta t$

Fluids

$$\rho = \frac{m}{v}$$

$$P = \frac{F}{A}$$

$$P_{y} = P_{air} + \rho gy$$

$$F_{B} = \rho gV$$

$$\rho_{1}A_{1}v_{1} = \rho_{2}A_{2}v_{2}; \text{ compressible}$$

$$A_{1}v_{1} = A_{2}v_{2}; \text{ incompressible}$$

$$P_{1} + \frac{1}{2}\rho v_{1}^{2} + \rho gy_{1} = P_{2} + \frac{1}{2}\rho v_{2}^{2} + \rho gy_{2}$$

Simple Harmonic Motion

$$\omega = 2\pi f = \frac{2\pi}{T}$$
$$T_s = 2\pi \sqrt{\frac{m}{k}}; \quad \omega = \sqrt{\frac{k}{m}}$$
$$T_p = 2\pi \sqrt{\frac{l}{g}}; \quad \omega = \sqrt{\frac{g}{l}}$$

Geometry/Algebra

Circles: $A = \pi r^2$ $C = 2\pi r = \pi D$ Spheres: $A = 4\pi r^2$ $V = \frac{4}{3}\pi r^3$ Triangles: $A = \frac{1}{2}bh$ Quadratics: $ax^2 + bx + c = 0 \rightarrow x = \frac{-b \pm \sqrt{3}}{2}$

Common Metric Prefixes

 $\begin{aligned} nano &= 1 \times 10^{-9} \\ micro &= 1 \times 10^{-6} \\ milli &= 1 \times 10^{-3} \\ centi &= 1 \times 10^{-2} \\ kilo &= 1 \times 10^{3} \\ mega &= 1 \times 10^{6} \end{aligned}$

Sound

$$v_{s} = f\lambda = (331 + 0.6T)\frac{m}{s}$$

$$\beta = 10 \log \frac{l}{l_{o}}$$

$$f_{n} = nf_{1} = n\frac{v}{2L}; n = 1,2,3, \dots \text{ open pipes}$$

$$f_{n} = nf_{1} = n\frac{v}{4L}; n = 1,3,5, \dots \text{ closed pipes}$$

Waves

$$v = f\lambda = \sqrt{\frac{F_T}{\mu}}$$

 $f_n = nf_1 = n\frac{v}{2L}; n = 1,2,3,...$
 $I = 2\pi^2 f^2 \rho v A^2$

Equations of Motion for SHM

$$x(t) = \begin{cases} x_{max} \sin\left(\frac{2\pi}{T}t\right) \\ x_{max} \cos\left(\frac{2\pi}{T}t\right) \\ v(t) = \begin{cases} v_{max} \cos\left(\frac{2\pi}{T}t\right) \\ -v_{max} \sin\left(\frac{2\pi}{T}t\right) \\ -a_{max} \sin\left(\frac{2\pi}{T}t\right) \\ -a_{max} \cos\left(\frac{2\pi}{T}t\right) \\ v = \pm v_{max} \sqrt{1 - \left(\frac{x}{x_{max}}\right)^2} \\ v = \pm \omega x_{max} \sqrt{1 - \left(\frac{x}{x_{max}}\right)^2} \end{cases}$$

Periodic Table of the Elements

IA																	VIIIA
H	2 11A				Atanic Number	Hydr	-	Symbol				13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	He
Li	Be	Bictons pr shill → 100 ← Anno Kingt State frantar (skir finan) Seketapris fra metal-metaliki-semetal bred (skir finalgrund) Bick metaliki Mill (skir final) Bickin metaliki Bickin metaliki Bickin metaliki										B B Boron Mall Jd	Carbon Carbon 12.000 34	7 N Minopen Nado 24	B Cappen Nature Nature	F	Ne
Na	Mg	3 1118	4 IVB	5 VB	Baline earth met ransition metals 6 VIB	Actinide Post-tra 7 VIIB	s notion metals 8 VIIIB	Bactive nonmetals Noble gases Y 10 11 VIIIB VIIIB IB			12 IIB	All Alluminium DA WO2 747	Silven Silven Jaan	Phesphorus Billine 244	Suther State	CL CL Manuel Manuel	Ar
K	Ca Calcium	Scandium Scandium 1441	22 Ti Titaasium 47.647 3-8-52	Vanadium BENIS 240-2	Chromiam BLMMI 14-0-1	25 Mn Manganese 14,70004 340-2	Fe	27 Co Cubalt 54.923 34.9-2	28 Ni Nickel BLATE 150-7	Cuper Cuper states		31 Ga Gattian 2020	32 Ge Germanium 72 430 3-8 8-4	33 Arsonic 76,922 34.8-1	34 Se Seleniam 78.571 34.84	25 Br	Kr
37 Rb 81409 10001	Sr	39 Y Witrium 86.70584 18-30-57	40 Zr 21rcontum 91,254 34 35 62	Noticum 141 Noticum 141001	Mo Mo Man Man Man	Tc Tc Netheastion 14901	Ru Rutester 14551	Rh	Pdladum Nate 1455	Ag	Cod Cod Date:	In In Indum NA2 14881	Sn Th	SI Sb Antimory DETW FALLET	52 Te Tetherium 12740 34.10.04	53 I Iodine 104/10 34/8-07	Xe
Cs UZ TOLETIN TOLESAN	Ba	87-71 Cardhanaise	72 Hf Hatnium TEAP 24-0-20-07	Tantatum Testatum Testatum Testator	Tangaten Bilaa Ianaitoz	Re Re Main Main	Os Os Nation	77 Ir 19222 34482167	Patenam Malanam Malanam		Hg	TI TI Iballum Iballum	Pb	Bi Bianuth 2014	Polantum (2010) Interview	Astatine OTO 24-8-20-87	
Fr	Ra	89-103 Activides	Ratherterdium (247) 149-27-32-97	Db Db Dutestum GMB SAREDERT	Senterput	Bh Botectam (278) 344 20 20 57	HS HS	Mt Mt Statistics	DS DS Commutations Case 24822001	Rg		Nhonum Chill 248222882	Flerasium DBM 349-232-84	115 Mc Mascowies (240) 248-22-22-84	114 Lv Livermonum 2723 348-32-02.84	Termessive CNU 348-05/0-87	
		La	SE Ce Cerson	Pr	Ňd	Pm	Sm	Eu	Gd	Tb	Dy Dypressen	Ho	Er	Tm Tm	Yb Therean	Lu	
		Actinium DZ77	to Th Therium	n Pa Pretactivium 2004 March 2004	92 U Uranium 20121 10100000	PO Npp Neptunium COTE Lances	N Pu Pu Potenium Dial	19 Americian Date Date	Contain Cartain Bath	T Bk Betadum Gan	" Californiam Diago	M Es Ensteinism CT2 MEDIAN	100 Fm Farmut GST	Managerovan Md Managerovan CSND	102 No tenselaan 1230		

https://www.wuwm.com/post/periodic-table-elements-turns-150#stream/0