Name \qquad
Physics 110 Quiz \#5, May 5, 2023
Please show all work, thoughts and/or reasoning to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A block of mass m is released from rest at point A and travels without friction down the hill and around the loop onto a horizontal surface where it contacts a spring with stiffness $k=\frac{m g}{2 R}$. Point C is the highest point on the loop and point B is the rightmost point on the loop as shown below.

a. Using energy ideas, what is the speed of the block at point B?

$$
\begin{aligned}
& \Delta E=0=\Delta K+\Delta U_{g}+\Delta U_{S}=\left(\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2}\right)+\left(m g y_{B}-m g y_{A}\right) \\
& 0=\frac{1}{2} m v_{B}^{2}+\left(m g y_{B}-m g y_{A}\right)=\frac{1}{2} m v_{B}^{2}+m g(R-h) \\
& v_{B}=\sqrt{2 g(h-R)}
\end{aligned}
$$

b. What is the magnitude of the net force on the mass at point B ?

In the x-direction: $F_{N}=-m \frac{v_{B}^{2}}{R}=-\frac{2 m g}{R}(h-R)$
In the y-direction: $F_{W}=-m g$
The net force: $F_{N e t}=\sqrt{F_{N}^{2}+F_{W}^{2}}=m g \sqrt{4\left(\frac{h-R}{R}\right)^{2}+1}$
c. Releasing the mass from rest at point A , what is the maximum compression of the spring? Assume that the spring is at a height $y=0$ above the ground.
$\Delta E=0=\Delta K+\Delta U_{g}+\Delta U_{S}=\left(m g y_{B}-m g y_{A}\right)+\left(\frac{1}{2} k x_{f}^{2}-\frac{1}{2} k x_{i}^{2}\right)$
$0=-m g y_{A}+\frac{1}{2} k x_{\max }^{2}=x_{\max }=\sqrt{\frac{2 m g h}{k}}=\sqrt{\frac{2 m g h}{m g / 2 R}}=\sqrt{4 h R}$

A graph of the compression of the spring x as a function of the starting height h of the mass is shown below, where $h_{\text {min }}$ is the minimum height needed for the block to be released at point A such that it makes it around the loop at point C .

d. Explain why section I of the plot is horizontal.
$h_{\text {min }}$ is the minimum height needed for the mass to make it around the loop and compress the spring. At any height h smaller than $h_{\text {min }}$, the block never makes it around the loop and therefore cannot compress the spring. Thus, section I is horizontal and equal to zero.
e. Explain the mathematical shape of section II.

From part c, we have $x_{\max }=\sqrt{4 h R}$ which says that $x \propto \sqrt{h}$ and thus the mathematical shape of section II is the square root of h.

