Name
Physics 110 Quiz \#5, November 1, 2013
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. Two objects of equal mass and radius are shown on the right. A disk (on the right with moment of inertia $I=\frac{1}{2} M R^{2}$) and a hoop (on the left with moment of inertial $I=M R^{2}$) have a string wrapped around their circumferences. Hanging from the string, halfway between
 the disk and the hoop, is a block of mass m. The disk and the hoop are free to rotate about their centers. When the block is released from rest and allowed to fall, the block
a. moves to the right of the centerline.
b. moves to the left of the centerline.
c. moves along the centerline.
d. moves both left and right of the centerline or it oscillates about the centerline.
2. Suppose that we have the set-up shown below consisting of a shaft of radius $r_{\text {shaft }}=$ 0.5 cm around which a massless string is wound and a disk of moment of inertial I is placed. The string is passed over a massless pulley where a mass $m_{h}=200 \mathrm{~g}$ is hung and allowed to fall from rest through a height $h=1 \mathrm{~m}$ acquiring a speed of $v=$ $1.84 \mathrm{~m} / \mathrm{s}$.
a. Using energy ideas derive an expression for the moment of inertia of the disk and then evaluate your expression using the information given in the problem above.

$$
\begin{aligned}
& \Delta E=0=\Delta K E_{T}+\Delta K E_{R}+\Delta U_{g}=\left(\frac{1}{2} m_{h} v_{f}^{2}-0\right)+\left(\frac{1}{2} I \omega_{f}^{2}-0\right)+\left(0-m_{h} g y_{i}\right) \\
& 0=\left(\frac{1}{2} m_{h} v_{f}^{2}-0\right)+\left(\frac{1}{2} I\left(\frac{v_{f}}{r_{s h}}\right)^{2}-0\right)+\left(0-m_{h} g h\right) \\
& I=\left(\frac{2 g h}{v_{f}^{2}}-1\right) m_{h} r_{s h}^{2}=\left(\frac{2 \times 9.8 \frac{m}{s^{2}} \times 1 \mathrm{~m}}{\left(1.84 \frac{m^{2}}{s}\right)}-1\right)(0.2 \mathrm{~kg})(0.005 \mathrm{~m})^{2}=2.4 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

b. Using ideas of torque and forces derive an expression for the moment of inertia of the disk and then evaluate your expression using the information given in the start of the problem.

$$
\begin{aligned}
& \sum \tau: r_{s h} F_{T}=r_{s h}\left(m_{h} g-m_{h} a\right)=I \alpha=I \frac{a}{r_{s h}} \\
& \rightarrow I=\left(\frac{g}{a}-1\right) m_{h} r_{s h}^{2}=\left(\frac{g}{\left(\frac{v_{f}^{2}}{2 h}\right)}-1\right) m_{h} r_{s h}^{2}=\left(\frac{2 g h}{v_{f}^{2}}-1\right) m_{h} r_{s h}^{2}=2.4 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& \sum F_{y}: F_{T}-m_{h} g=-m_{h} a \rightarrow F_{T}=m_{h} g-m_{h} a
\end{aligned}
$$

Motion in the $\mathrm{r}=\mathrm{x}, \mathrm{y}$ or z -directions
$r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2}$
$v_{f r}=v_{0 r}+a_{r} t$
$v_{f r}{ }^{2}=v_{0 r}{ }^{2}+2 a_{r} \Delta r$

Vectors

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry/Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h$	$A=4 \pi r^{2}$
$A=\pi r^{2}$		$V=\frac{4}{3} \pi r^{3}$

Quadratic equation : $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{array}{ll}
\text { magnitude of avector }=\sqrt{v_{x}^{2}+v_{y}^{2}} & g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
\text { direction of a vector } \rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right) & N_{A}=6.02 \times 10^{23 \mathrm{atoms} / \mathrm{mole}} \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}
\end{array} v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s} .
$$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Work/Energy

$$
K_{T}=\frac{1}{2} m v^{2}
$$

Heat

$$
T_{C}=\frac{5}{9}\left[T_{F}-32\right]
$$

$$
K_{R}=\frac{1}{2} I \omega^{2}
$$

$$
T_{F}=\frac{9}{5} T_{C}+32
$$

$$
U_{g}=m g h
$$

$$
L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)
$$

$$
U_{S}=\frac{1}{2} k x^{2}
$$

$$
A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)
$$

$$
W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}
$$

$$
V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha
$$

$$
W_{R}=\tau \theta=\Delta E_{R}
$$

$$
P V=N k_{B} T
$$

$$
W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}
$$

$$
\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}
$$

$$
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0
$$

$$
\Delta Q=m c \Delta T
$$

$$
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }}
$$

$$
P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T
$$

$$
P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}
$$

$$
\Delta U=\Delta Q-\Delta W
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound
$v=f \lambda=(331+0.6 T) \frac{\mathrm{m}}{\mathrm{s}}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

Simple Harmonic Motion/Waves

$$
\omega=\sqrt{\frac{k}{m}}=2 \pi f=\frac{2 \pi}{T}
$$

$$
T_{S}=2 \pi \sqrt{\frac{m}{k}}
$$

$$
T_{P}=2 \pi \sqrt{\frac{l}{g}}
$$

$$
v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
$$

$$
x(t)=x_{\max } \sin (\omega t) \text { or } x_{\max } \cos (\omega t)
$$

$$
v(t)=v_{\max } \cos (\omega t) \text { or }-v_{\max } \sin (\omega t)
$$

$$
a(t)=-a_{\max } \sin (\omega t) \text { or }-a_{\max } \cos (\omega t)
$$

$$
v_{\max }=\omega x_{\max } ; \quad a_{\max }=\omega^{2} x_{\max }
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$$
I=2 \pi^{2} f^{2} \rho v A^{2}
$$

