Name \qquad
Physics 110 Quiz \#6, November 6, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A very light cable holds up a uniform bar $\left(W_{b a r}=700 \mathrm{~N}\right)$ to which a weight of 400 N is attached to the far right end of the bar of length $l=8 \mathrm{~m}$.
 to the wall, what is the expression for the sum of the torques about the pivot? Assume clockwise is the positive direction for the torque.

$$
\sum \tau:+\frac{l}{2} F_{w, b a r} \sin 70+l F_{w, h} \sin 70-l F_{T} \sin 65=I_{s y s} \alpha=0
$$

3. What is the magnitude of the tension force in the cable?

From the torques:

$$
F_{T} \sin 65=\left(\frac{F_{w, b a r}}{2}+F_{w, h}\right) \sin 70 \rightarrow F_{T}=\left(\frac{700 N}{2}+400 \mathrm{~N}\right) \frac{\sin 70}{\sin 65}=777.6 \mathrm{~N}
$$

4. What are the magnitude and direction of the reaction force due to the hinge?

From the horizontal forces:
$F_{R} \cos \phi-F_{T} \cos 45=0 \rightarrow F_{R x}=F_{R} \cos \phi=F_{T} \cos 45=777.6 N \cos 45=549.9 \mathrm{~N}$
From the vertical forces:

$$
F_{R} \sin \phi-F_{w, b a r}-F_{w, h}+F_{T} \sin 45=0 \rightarrow F_{R y}=F_{R} \sin \phi=F_{w, b a r}+F_{w, h}-F_{T} \sin 45
$$

$$
F_{R y}=F_{R} \sin \phi=700 N+400 N-777.6 N \sin 45=550.6 N
$$

The magnitude of the reaction force:

$$
F_{R}=\sqrt{F_{R x}^{2}+F_{R y}^{2}}=\sqrt{(549.9 N)^{2}+(550.6 N)^{2}}=778.2 N
$$

The direction of the rection force:

$$
\tan \phi=\frac{F_{R y}}{F_{R x}} \rightarrow \phi=\tan ^{-1}\left(\frac{F_{R y}}{F_{R x}}\right)=\tan ^{-1}\left(\frac{550.6 N}{549.9 N}\right)=45^{0}
$$

5. A large balloon is filled with helium gas. To prevent it from floating away the balloon is tied to the ground by a light string. What is the magnitude of the tension in the rope if $\rho_{h e}=0.164 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, \rho_{\text {air }}=1.3 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$, and the volume of the balloon is $22 \mathrm{~m}^{3}$. Assume the balloon itself is very light.
$\sum F_{y}: F_{B}-F_{T}-F_{w, H e}=m_{\text {system }} a_{y}=0$
$F_{T}=F_{B}-F_{w, H e}=\rho_{a i r} g V-\rho_{H e} g V$
$F_{T}=\left(\rho_{\text {air }}-\rho_{\text {He }}\right) g V=\left(1.3 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}-0.164 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 22 \mathrm{~m}^{3}$
$F_{T}=244.9 \mathrm{~N}$

Physics 110 Formulas

Motion
$\Delta \mathrm{x}=x_{f}-x_{i} \quad v_{\text {avg }}=\frac{\Delta x}{\Delta t} \quad a_{\text {avg }}=\frac{\Delta v}{\Delta t}$

Equations of Motion
displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} y\end{array}\right.$

Uniform Circular Motion
$F_{r}=m a_{r}=m \frac{v^{2}}{r} ; \quad a_{r}=\frac{v^{2}}{r}$
$v=\frac{2 r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Vectors
magnitude of a vector: $v=|\vec{v}|=\sqrt{v_{x}{ }^{2}+v_{y}^{2}}$
direction of a vector: $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Useful Constants

$$
\begin{array}{rlrlrl}
g & =9.8 \mathrm{~m} / \mathrm{s}^{2} & G=6.67 & 10^{11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}} \\
N_{A} & =6.02 & 10^{23} \text { atoms } / \text { mole } & k_{B} & =1.38 \quad 10^{23} \mathrm{~J} / \mathrm{K} \\
& =5.67 & 10^{8} \mathrm{~W} / \mathrm{m}^{2} K^{4} & v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \quad t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=k \vec{x}$
$F_{f}=F_{N}$

Work/Energy

$$
K_{t}=\frac{1}{2} m v^{2}
$$

$$
K_{r}=\frac{1}{2} I^{2}
$$

$$
U_{g}=m g h
$$

$$
U_{S}=\frac{1}{2} k x^{2}
$$

$$
W_{T}=F d C o s=E_{T}
$$

$$
W_{R}=\quad=E_{R}
$$

$$
\hat{W_{n e t}}=W_{R}+\hat{W_{T}}=E_{R}+E_{T}
$$

$$
E_{R}+E_{T}+U_{g}+U_{S}=0
$$

$$
\begin{aligned}
& E_{R}+E_{T}+U_{g}+U_{S}=0 \\
& E_{R}+E_{T}+U_{g}+U_{S}=\quad E_{\text {diss }} \quad P_{C}=\frac{Q}{t}=\frac{k A}{L} T
\end{aligned}
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: \nu=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound

$$
\begin{aligned}
v & =f=(331+0.6 T) \frac{\mathrm{m}}{\mathrm{~s}} \\
& =10 \log \frac{I}{I_{0}} ; I_{o}=1 \quad 10^{12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
\end{aligned}
$$

$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Heat
$T_{C}=\frac{5}{9}\left[\begin{array}{ll}T_{F} & 32\end{array}\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\quad T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \quad T)$
$V_{\text {new }}=V_{\text {old }}(1+T):=3$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$Q=m c T$

$$
P_{R}=\frac{Q}{T}=A T^{4}
$$

$$
U=Q \quad W
$$

Simple Harmonic Motion/Waves

$$
\begin{aligned}
& =2 f=\frac{2}{T} \\
& T_{S}=2 \sqrt{\frac{m}{k}} \\
& T_{P}=2 \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1 \frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}} \\
& x(t)=A \sin \left(\frac{2 t}{T}\right) \\
& v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 t}{T}\right) \\
& a(t)=A \frac{k}{m} \sin \left(\frac{2 t}{T}\right) \\
& v=f=\sqrt{\frac{F_{T}}{2}} \\
& f_{n}=n f_{1}=n \frac{v}{2 L} \\
& I=2^{2} f^{2} \quad v A^{2}
\end{aligned}
$$

