Name
Physics 110 Quiz \#6, May 15, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A box of mass $m_{b}=2 \mathrm{~kg}$ is at rest on a ramp inclined at an angle of $\theta=37^{0}$ measured with respect to the horizontal. The box is connected by a light string to a pulley (located at the top of the ramp) of mass $m_{p}=$ 6 kg and radius $r_{p}=0.2 \mathrm{~m}$. The box is released from rest and slides down the incline a distance $d=0.7 \mathrm{~m}$.
a. When the box is released from rest the acceleration of the box down the incline is measred to be $a=$ $2 \frac{m}{s^{2}}$. What is the moment of inertia of the pulley if we assume the incline is frictionless. Hint: You don't know the shape of the pulley. It could be a hoop, a cylinder, a ball, or something else. You don't know, so don't assume a formula.

Taking down the ramp as the positive x -direction and using a tilted coordinate system we have:
$m g \sin \theta-F_{T}=m a \rightarrow F_{T}=m g \sin \theta-m a=2 k g\left(9.8 \frac{m}{\bar{s}^{2}} \sin 37-2 \frac{m}{s^{2}}\right)=7.8 \mathrm{~N}$
Taking the torque about the axis of rotation of the pulley (assuming counterclockwise is the positive direction for the torque) we have:
$\tau_{p}=r_{p} F_{T} \sin \theta=r_{p} F_{T} \sin 90=r_{p} F_{T}=I \alpha=I\left(\frac{a}{r_{p}}\right) \rightarrow I=\frac{r_{p}^{2} F_{T}}{a}=\frac{(0.2 m)^{2} \times 7.8 \mathrm{~N}}{2 \frac{m}{s^{2}}}=0.156 \mathrm{kgm}^{2}$
b. Using a rotational equation of motion, if the block slides distance $d=0.7 \mathrm{~m}$ down the ramp, what is the rotational speed of the pulley about its axis of rotation?

$$
\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta \rightarrow \omega_{f}=\sqrt{2 \alpha \Delta \theta}=\sqrt{2\left(\frac{a}{r}\right)\left(\frac{x}{r}\right)}=\sqrt{\frac{2 a x}{r_{p}^{2}}}=\sqrt{\frac{2 \times 2 \frac{m}{s^{2}} \times 0.7 m}{(0.2 m)^{2}}}=8.37 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

c. Suppose friction existed between the box and the ramp with coefficient of friction $\mu=0.2$. What is the constant angular acceleration of the pulley about its axis of rotation if the box is released from rest and slides down the ramp a distance $d=0.7 m$?

Taking down the ramp as the positive x -direction and using a tilted coordinate system we have:
$m g \sin \theta-F_{T}-F_{f r}=m a \rightarrow F_{T}=m g \sin \theta-\mu m g \cos \theta-m r_{p} \alpha$
Taking the torque about the axis of rotation of the pulley (assuming counterclockwise is the positive direction for the torque) we have:

$$
\begin{aligned}
& \tau_{p}=r_{p} F_{T} \sin \theta=r_{p} F_{T} \sin 90=r_{p} F_{T}=I \alpha \rightarrow F_{T}=\frac{I \alpha}{r_{p}} \\
& F_{T}=\frac{I \alpha}{r_{p}}=m g \sin \theta-\mu m g \cos \theta-m r_{p} \alpha \rightarrow \alpha=\frac{g(\sin \theta-\mu \cos \theta)}{r_{p}\left(1+\frac{I}{m r_{p}^{2}}\right)}=\frac{9.8 \frac{m}{s^{2}}(\sin 37-0.2 \cos 37)}{0.2 m\left(1+\frac{0.156 k g m^{2}}{2 k g(0.2 m)^{2}}\right)}=7.3 \frac{\mathrm{rad}}{s^{2}}
\end{aligned}
$$

d. Suppose that you connect a motor to the pulley to pull the block back up the incline a distance of $d=$ 0.7 m . What torque would the motor ($\tau_{\text {motor }}$) need to produce to pull the block back up the incline at a constant speed if the box started from rest? Assume friction still exists between the box and the ramp with coefficient of friction $\mu=0.2$.

At a constant speed means that $a=0(\& \alpha=0)$.
The net torque is given as the torque due to the motor and the torque due to the tension in the string. (Assume counterclockwise is positive for the torques.)

$$
-\tau_{\text {motor }}+\tau_{F_{T}}=-I \alpha \rightarrow \tau_{\text {motor }}=\tau_{F_{T}}=r_{p} F_{T}
$$

The tension force is determined from the block on the incline. Taking up the incline as the positive x direction we have:

$$
\begin{aligned}
& F_{T}-F_{W x}-F_{f r}=F_{T}-m g \sin \theta-\mu m g \cos \theta=m a=0 \\
& F_{T}=m g \sin \theta+\mu m g \cos \theta \\
& \rightarrow \tau_{m o t o r}=r_{p} F_{T}=r_{p}(m g \sin \theta+\mu m g \cos \theta) \\
& \rightarrow \tau_{\text {motor }}=0.2 \mathrm{~m} \times 2 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \sin 37+0.2 \mathrm{~m} \times 0.2 \times 2 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cos 37 \\
& \rightarrow \tau_{\text {motor }}=2.36 \mathrm{Nm}+0.63 \mathrm{Nm}=2.99 \mathrm{Nm}
\end{aligned}
$$

Physics 110 Formulas

Motion
$\Delta \mathrm{x}=x_{f}-x_{i} \quad v_{\text {avg }}=\frac{\Delta x}{\Delta t} \quad a_{\text {avg }}=\frac{\Delta v}{\Delta t}$

Equations of Motion
displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \Delta x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y\end{array}\right.$

Uniform Circular Motion
$F_{r}=m a_{r}=m \frac{v^{2}}{r} ; \quad a_{r}=\frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Vectors
magnitude of a vector: $v=|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector: $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Work/Energy

$$
K_{t}=\frac{1}{2} m v^{2}
$$

$$
K_{r}=\frac{1}{2} I \omega^{2}
$$

$$
U_{g}=m g h
$$

$$
U_{S}=\frac{1}{2} k x^{2}
$$

$$
W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}
$$

$$
W_{R}=\tau \theta=\Delta E_{R}
$$

$$
W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}
$$

$$
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0
$$

$$
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0 \quad \quad P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T
$$

$$
P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}
$$

$$
\Delta U=\Delta Q-\Delta W
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound
$v=f \lambda=(331+0.6 T) \frac{\mathrm{m}}{\mathrm{s}}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Useful Constants

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11 \mathrm{Nm}^{2}} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \mathrm{mole} \quad k_{B}=1.38 \times 10^{-23 \mathrm{~J} / \mathrm{K}} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

