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Physics 110 Quiz #6, May 15, 2020

Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10
points total.

1 affirm that I have carried out my academic endeavors with full academic honesty.

A box of mass m;, = 2kg is at rest on a ramp inclined at an angle of 8 = 37°measured with respect to the
horizontal. The box is connected by a light string to a pulley (located at the top of the ramp) of mass m,, =
6kg and radius 1, = 0.2m. The box is released from rest and slides down the incline a distance d = 0.7m.

a. When the box is released from rest the acceleration of the box down the incline is measred to be a =
27. What is the moment of inertia of the pulley if we assume the incline is frictionless. Hint: You

don’t know the shape of the pulley. It could be a hoop, a cylinder, a ball, or something else. You
don’t know, so don’t assume a formula.

Taking down the ramp as the positive x-direction and using a tilted coordinate system we have:
mgsin@ — Fr = ma - Fr = mgsinf —ma = 2kg (9.8?2 sin37 — ZSEZ) = 7.8N

Taking the torque about the axis of rotation of the pulley (assuming counterclockwise is the positive
direction for the torque) we have:
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b. Using a rotational equation of motion, if the block slides distance d = 0.7m down the ramp, what is
the rotational speed of the pulley about its axis of rotation?
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Suppose friction existed between the box and the ramp with coefficient of friction u = 0.2. What is
the constant angular acceleration of the pulley about its axis of rotation if the box is released from rest
and slides down the ramp a distance d = 0.7m?

Taking down the ramp as the positive x-direction and using a tilted coordinate system we have:
mgsin6 — Fr — Fp, = ma - Fyr = mgsinf — umg cos  — mr,a

Taking the torque about the axis of rotation of the pulley (assuming counterclockwise is the positive

direction for the torque) we have:
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Suppose that you connect a motor to the pulley to pull the block back up the incline a distance of d =
0.7m. What torque would the motor (T,;0t0r) Need to produce to pull the block back up the incline at a
constant speed if the box started from rest? Assume friction still exists between the box and the ramp
with coefficient of friction u = 0.2.

At a constant speed means that a = 0 (& @ = 0).

The net torque is given as the torque due to the motor and the torque due to the tension in the string.
(Assume counterclockwise is positive for the torques.)

~Tmotor + Trp = —10 = Tyotor = Trp = IpFr

The tension force is determined from the block on the incline. Taking up the incline as the positive x-
direction we have:

Fr — Fyx — Fpr = Fr —mgsinf — umgcos6 =ma =0

Fr =mgsinf + umg cos 6

= Tmotor = TpFr = 1,(mg sin6 + umg cos 6)

= Tmotor = 0.2m X 2kg X 9.8gsin 37 4+ 0.2m x 0.2 x 2kg X 9.8gcos 37

= Tmotor = 2.36Nm + 0.63Nm = 2.99Nm
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