Name \qquad
Physics 110 Quiz \#6, May 12, 2022
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. A dart of mass $m=0.2 \mathrm{~kg}$ is launched from the ground at an angle $\theta=38^{\circ}$ measured with respect to the ground at a speed of $v_{i}=10 \frac{\mathrm{~m}}{\mathrm{~s}}$. When the dart reaches its highest point above the ground it strikes a soft wooden block of mass $M=1.3 \mathrm{~kg}$ initially at rest. How high above the ground was the wooden block placed?
$\Delta E=\Delta K+\Delta U_{g}+\Delta U_{S}=0$
$0=\left(\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}\right)+\left(m g y_{f}-m g y_{i}\right)$
$0=\frac{1}{2} m\left(v_{i} \cos \theta\right)^{2}-\frac{1}{2} m v_{i}^{2}+m g h$

$h=\frac{v_{i}^{2}\left(1-\cos ^{2} \theta\right)}{2 g}=\frac{\left(10 \frac{m}{s}\right)^{2}\left(1-\cos ^{2} 38\right)}{2 \times 9.8 \frac{m}{s^{2}}}=1.93 \mathrm{~m}$
2. Immediately after the dart strikes the wooden block it becomes stuck in the block. With what speed does the dart and block move after the collision?
$p_{i x}=p_{f x} \rightarrow m v_{i x}=(m+M) V \rightarrow V=\left(\frac{m}{m+M}\right) v_{i x}=\left(\frac{0.2 \mathrm{~kg}}{0.2 \mathrm{~kg}+1.3 \mathrm{~kg}}\right) 10 \frac{\mathrm{~m}}{\mathrm{~s}} \cos 38$ $V=1.1 \frac{\mathrm{~m}}{\mathrm{~s}}$
3. Through what angle ϕ measured with respect to the vertical do the dart and block swing through if the rope has a length of $L=1.0 \mathrm{~m}$.

$$
\begin{aligned}
& \Delta E=\Delta K+\Delta U_{g}+\Delta U_{S}=0 \\
& 0=\left(\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}\right)+\left(m g y_{f}-m g y_{i}\right)=-\frac{1}{2} m v_{i}^{2}+m g L(1-\cos \phi) \\
& \cos \phi=1-\frac{v_{i}^{2}}{2 g L}=1-\frac{\left(1.1 \frac{m}{s}\right)^{2}}{2 \times 9.8 \frac{m}{s^{2}} \times 1 m}=0.9437 \rightarrow \phi=19.3^{0}
\end{aligned}
$$

4. What fraction of the initial energy in the dart is lost in the collision with the wooden block?

$$
\begin{aligned}
& f=\frac{\Delta K}{K_{i}}=\frac{\frac{1}{2}(m+M) V^{2}-\frac{1}{2} m v_{i}^{2}}{\frac{1}{2} m v_{i}^{2}}=\left(\frac{m+M}{m}\right) \frac{V^{2}}{v_{i}^{2}}-1=\left(\frac{0.2 k g+1.3 k g}{0.2 k g}\right)\left(\frac{1.1 \frac{m}{s}}{10 \frac{m}{s} \cos 38}\right)^{2}-1 \\
& f=-0.85
\end{aligned}
$$

5. Suppose that instead of the soft wooden block, a metal block of the same mass ($M=1.3 \mathrm{~kg}$) is suspended from the rope at rest. The same dart $(m=0.2 \mathrm{~kg})$ is launched at the same velocity as in part 1 and in this case the dart bounces off the metal block with a velocity $v_{f x}=$ $-\frac{3}{4} v_{i x}$, where $v_{i x}$ is the impact velocity of the dart with the metal block. Through what angle ϕ measured with respect to the vertical, did the metal block swing?

$$
\begin{aligned}
& p_{i x}=p_{f x} \rightarrow m v_{i x, m}=m v_{f x, m}+M v_{f x, M}=-\frac{3}{4} m v_{i x, m}+M v_{f x, M} \rightarrow v_{f x, M}=\frac{7}{4}\left(\frac{m}{M}\right) v_{i x, m} \\
& v_{f x, M}=\frac{7}{4}\left(\frac{m}{M}\right) v_{i x, m}=\frac{7 \times 0.2 k g}{4 \times 1.3 \mathrm{~kg}} \times 10 \frac{m}{s} \cos 38=2.12 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \Delta E=\Delta K+\Delta U_{g}+\Delta U_{S}=0 \\
& 0=\left(\frac{1}{2} M v_{f}^{2}-\frac{1}{2} M v_{i}^{2}\right)+\left(M g y_{f}-M g y_{i}\right)=-\frac{1}{2} M v_{i}^{2}+M g L(1-\cos \phi) \\
& \cos \phi=1-\frac{v_{i}^{2}}{2 g L}=1-\frac{\left(2.12 \frac{m}{s}\right)^{2}}{2 \times 9.8 \frac{m}{s^{2}} \times 1 m}=0.7704 \rightarrow \phi=39.6^{0}
\end{aligned}
$$

Physics 110 Formula sheet

Vectors
$v=\sqrt{v_{x}^{2}+v_{y}^{2}}$
$\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Motion Definitions
Displacement: $\Delta x=x_{f}-x_{i}$
Average velocity: $v_{\text {avg }}=\frac{\Delta x}{\Delta t}$
Average acceleration: $a_{\text {avg }}=\frac{\Delta v}{\Delta t}$

Equations of Motion

displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \Delta x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y\end{array}\right.$
Rotational Motion Definitions
Angular displacement: $\Delta s=r \Delta \theta$
Angular velocity: $\omega=\frac{\Delta \theta}{\Delta t} \rightarrow v=r \omega$
Angular acceleration: $\alpha=\frac{\Delta \omega}{\Delta t} \rightarrow\left\{\begin{array}{c}a_{t}=r \alpha \\ a_{c}=r \omega^{2}\end{array}\right.$
Rotational Equations of Motion

$$
\begin{aligned}
& \theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2} \\
& \omega_{f}=\omega_{i}+\alpha t \\
& \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta
\end{aligned}
$$

Momentum \& Force
$\vec{p}=m \vec{v} \rightarrow p_{x}=m v_{x} ; p_{y}=m v_{y}$
$\Delta \vec{p}=\vec{F} \Delta t \rightarrow \vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=\frac{d \vec{p}}{d t}=m \vec{a} \rightarrow F_{x}=m a_{x} ; F_{y}=m a_{y}$
$F_{f r}=\mu F_{N}$
$F_{w}=m g$
$F_{s}=-k x$
$F_{G}=G \frac{M_{1} M_{2}}{r^{2}}$
$F_{c}=m a_{c}=m \frac{v^{2}}{R}$
Work \& Energy
$\left\{\begin{array}{c}W_{T}=\int \vec{F} \cdot d \vec{r}=F d r \cos \theta=\Delta K_{T} \\ W_{R}=\int \vec{\tau} \cdot d \vec{\theta}=\tau d \theta=\Delta K_{R}\end{array}\right.$
$W_{\text {net }}=W_{T}+W_{R}=\Delta K_{T}+\Delta K_{R}=-\Delta U$
$K_{T}=\frac{1}{2} m v^{2}$
$K_{R}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g y$
$U_{S}=\frac{1}{2} k x^{2}$
$\Delta E=\Delta E_{R}+\Delta E_{T}$
$\Delta E=\Delta K_{R}+\Delta K_{T}+\Delta U_{g}+\Delta U_{s}=\left\{\begin{array}{c}0 \\ W_{f r}\end{array}\right.$
Rotational Momentum \& Force
$\vec{\tau}=\vec{r} \times \vec{F} ; \tau=r_{\perp} F=r F_{\perp}=r F \sin \theta$
$\tau=\frac{\Delta L}{\Delta t}=I \alpha$
$L=I \omega$
$\Delta \vec{L}=\vec{\tau} \Delta t \rightarrow \vec{L}_{f}=\vec{L}_{i}+\vec{\tau} \Delta t$

Fluids
$\rho=\frac{m}{V}$
$P=\frac{F}{A}$
$P_{y}=P_{\text {air }}+\rho g y$
$F_{B}=\rho g V$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$; compressible $A_{1} v_{1}=A_{2} v_{2}$; incompressible
$P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$

Simple Harmonic Motion
$\omega=2 \pi f=\frac{2 \pi}{T}$
$T_{S}=2 \pi \sqrt{\frac{m}{k}} ; \quad \omega=\sqrt{\frac{k}{m}}$
$T_{p}=2 \pi \sqrt{\frac{l}{g}} ; \quad \omega=\sqrt{\frac{g}{l}}$

Geometry/Algebra
Circles:

$$
A=\pi r^{2} \quad C=2 \pi r=\pi D
$$

Spheres: $\quad A=4 \pi r^{2}$
$V=\frac{4}{3} \pi r^{3}$

Triangles: $\quad A=\frac{1}{2} b h$
Quadratics: $\quad a x^{2}+b x+c=0 \rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad v= \pm \omega x_{\max } \sqrt{1-\left(\frac{x}{x_{\max }}\right)^{2}}$

Common Metric Prefixes

nano $=1 \times 10^{-9}$
micro $=1 \times 10^{-6}$
milli $=1 \times 10^{-3}$
centi $=1 \times 10^{-2}$
kilo $=1 \times 10^{3}$
$m e g a=1 \times 10^{6}$

Periodic Table of the Elements

