Name
Physics 110 Quiz \#7, November 11, 2016
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. A tsunami is a wave pulse consisting of several crests (high points of a wave) and troughs (low points of a wave) that become drastically large as they enter shallow water at the shore. Tsunamis are large amplitude ocean waves and as the wave climbs up the shoreline the height of the approaching wall of water gets very tall on land as shown in the diagram below. Assume that the tsunami has a wavelength of $\lambda=235 \mathrm{~km}$ and a velocity of $v=153 \frac{\mathrm{~m}}{\mathrm{~s}}$ that was caused by an earthquake out in the Pacific Ocean. As the tsunami approaches Hawaii, people are drawn to the shoreline to observe the drastic withdrawal of water as the tsunami approaches.
Approximately how much time do they have to run to safety before the wave hits the shoreline? (In the absence of knowledge and warning systems people have died during tsunamis, some of them attracted to
 the shore to see stranded fish and boats.)

From the crest of the wave to the ground represents one half of a wavelength. Thus,

$$
\Delta x=\frac{\lambda}{2} \text { and } v=\frac{\Delta x}{\Delta t} \rightarrow \Delta t=\frac{\Delta x}{v}=\frac{\lambda}{2 v}=\frac{235 \times 10^{2} m}{2 \times 153 \frac{m}{s}}=768 s \times \frac{1 \mathrm{~min}}{60 s}=12.8 \mathrm{~min} .
$$

2. A string of length $L=3 \mathrm{~m}$ and mass 0.5 kg has a weight of $48 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=470 \mathrm{~N}$ suspended from one end. The end of string with the attached weight passes over a massive pulley ($m_{p}=3 \mathrm{~kg}$) and the other end is oscillated at a frequency $f=475 \mathrm{~Hz}$.
How many standing loops will be produced if the distance between the point of oscillation and the pulley is $l=8 \mathrm{~m}$?
$v=\sqrt{\frac{F_{T}}{\mu}}=f \lambda=f\left(\frac{2 l}{n}\right) \rightarrow n=2 l f \sqrt{\frac{\mu}{F_{T}}}=$
$n=2 \times 8 m \times 475 s^{-1} \sqrt{\frac{0.5 \mathrm{~kg} / 3 m}{470 N}}$
$n=143$
3. A stone is dropped from the top of a cliff. The splash it makes is heard $2.7 s$ later. How high is the cliff?

The time for the stone to fall is $y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2} \rightarrow h=\frac{1}{2} g t_{\text {down }}^{2}$. When the stone hits the water the sound of the splash travels up the same distance the stone fell and this time is given by $v_{\text {sound }}=\frac{h}{t_{u p}} \rightarrow t_{u p}=\frac{h}{v_{\text {sound }}}$. The total time from dropping the stone to hearing the sound is $T=t_{u p}+t_{\text {down }}$. Thus $t_{\text {down }}=T-t_{u p}=T-\frac{h}{v_{\text {sound }}}$ and $h=\frac{1}{2} g t_{\text {down }}^{2}=\frac{1}{2} g\left(T-\frac{h}{v_{\text {sound }}}\right)^{2}$. Expanding this and solving for the height we have:
$h=\frac{1}{2} g\left(T-\frac{h}{v_{\text {sound }}}\right)^{2}=\frac{1}{2} g\left(T^{2}-2 T \frac{h}{v_{\text {sound }}}+\frac{h^{2}}{v_{\text {sound }}^{2}}\right)$
$0=\frac{g T^{2}}{2}-\left(1+\frac{g T}{v_{\text {sound }}}\right) h+\left(\frac{g}{2 v_{\text {sound }}^{2}}\right) h^{2}$
$0=35.7-1.08 h+4.2 \times 10^{-5} h^{2}$
$h=\left\{\begin{array}{c}33 \mathrm{~m} \\ 2.6 \times 10^{4} \mathrm{~m}\end{array}\right.$

Since the total time of travel is only $2.7 s$, we choose the smaller distance. Thus the height of the cliff is 33 m .
4. Two sounds A and B differ in intensity level by $20 d B$. What is the ratio of the intensity of sound A to that of sound B? Hint: $\log M-\log N=\log \frac{M}{N}$.
$\beta_{A}-\beta_{B}=20 d B=10 \log \frac{I_{A}}{I_{t h}}-10 \log \frac{I_{B}}{I_{t h}}=10 \log \frac{I_{A}}{I_{B}}$
$\frac{I_{A}}{I_{B}}=10^{\frac{\beta_{A}-\beta_{B}}{10}}=10^{\frac{20}{10}}=10^{2}=100$

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathbf{y}$ or \mathbf{z}-directions

$$
\begin{aligned}
& r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2} \\
& v_{f r}=v_{0 r}+a_{r} t \\
& v_{f r}^{2}=v_{0 r}^{2}+2 a_{r} \Delta r
\end{aligned}
$$

$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r} \quad \begin{array}{llc}\text { Circles } & \text { Triangles } & \text { Spheres } \\ C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ A=\pi r^{2} & & V=\frac{4}{3} \pi r^{3}\end{array}$

$$
v=\frac{2 \pi r}{T}
$$

$$
F_{G}=G \frac{m_{1} m_{2}}{r^{2}}
$$

Geometry /Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h$	$A=4 \pi r^{2}$
$A=\pi r^{2}$		$V=\frac{4}{3} \pi r^{3}$

Quadratic equation : $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Vectors
magnitude of avector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Useful Constants

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
Work/Energy
$g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11 \mathrm{Nm}^{2}} / \mathrm{kg}^{2}$
$N_{A}=6.02 \times 10^{23}$ atoms $/$ mole $\quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$K_{t}=\frac{1}{2} m v^{2}$
Heat
$K_{r}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }} \quad P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega_{f}^{2}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

Simple Harmonic Motion/Waves

$$
\begin{aligned}
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& T_{S}=2 \pi \sqrt{\frac{m}{k}} \\
& T_{P}=2 \pi \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
x(t)=A \sin \left(\frac{2 \pi t}{T}\right)
$$

$$
v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi t}{T}\right)
$$

$$
a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi t}{T}\right)
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$$
I=2 \pi^{2} f^{2} \rho v A^{2}
$$

