

Physics 111

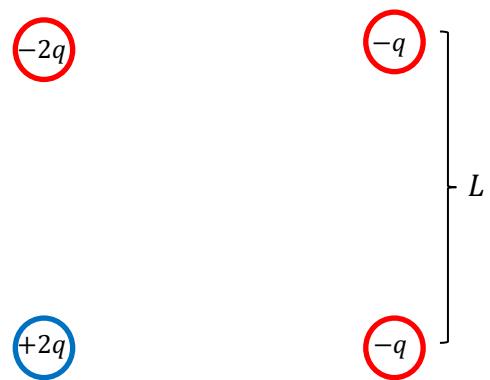
Exam #1

January 23, 2026

Name _____

Please read and follow these instructions carefully:

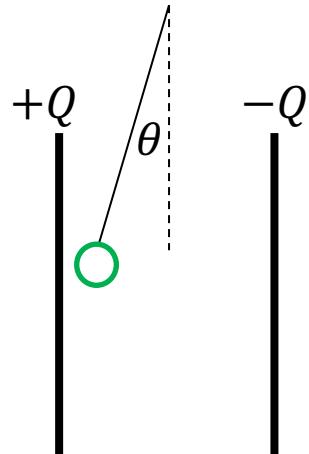
- Read all problems carefully before attempting to solve them.
- Your work must be legible, and the organization clear.
- You must show all work, including correct vector notation.
- You will not receive full credit for correct answers without adequate explanations.
- You will not receive full credit if incorrect work or explanations are mixed in with correct work. So, erase or cross out anything you don't want graded.
- Make explanations complete but brief. Do not write a lot of prose.
- Include diagrams.
- Show what goes into a calculation, not just the final number. For example, $|\bar{p}| \approx m|\bar{v}| = (5\text{kg}) \times (2 \frac{\text{m}}{\text{s}}) = 10 \frac{\text{kg}\cdot\text{m}}{\text{s}}$
- Give standard SI units with your results unless specifically asked for a certain unit.
- Unless specifically asked to derive a result, you may start with the formulas given on the formula sheet including equations corresponding to the fundamental concepts.
- Go for partial credit. If you cannot do some portion of a problem, invent a symbol and/or value for the quantity you can't calculate (explain that you are doing this), and use it to do the rest of the problem.
- Each free-response part is worth 6 points.


Problem #1	/24
Problem #2	/24
Problem #3	/24
Total	/72

I affirm that I have carried out my academic endeavors with full academic honesty.

1. Consider the following arrangement of four point-charges arranged on the corners of a square. Assume that the square has sides of length L .

a. How much work was done to assemble this collection of point-charges. Assume each point-charge is brought in one at a time from very far away and put in their final locations.


b. What is the electric potential energy in this collection of point-charges? Does the sign of the potential energy make sense? Explain why or why not in a sentence or two.

2. A capacitor is constructed out of two circular parallel plates of diameter 10cm separated by an unknown distance d . The initially uncharged capacitor is connected to a resistor and a 1000V battery and charged to its maximum value Q_{max} where $Q_{max} = 0.7\text{nC}$.

a. If the capacitor is air filled, what is the separation between the plates of this capacitor?

b. Suppose the capacitor is oriented as shown on the right. At the midpoint between the plates a point-charge q (the green circle) is suspended from an insulating string of length $L = 75\text{cm}$. The point-charge comes into equilibrium when the string makes an angle $\theta = 20^\circ$ measured with respect to the vertical. What is the magnitude and direction of the electric field between the plates?

c. What is the sign of the point-charge q ? Explain your choice fully to earn full credit. Simply stating positive or negative will earn minimal credit.

d. What is the magnitude of the point-charge q if $m = 250g$?

3. Bismuth ($^{209}_{83}Bi$) has a nuclear radius r_N given by $r_N = 1.2 \times 10^{-15} m \cdot A^{\frac{1}{3}}$, where A is the atomic mass in unified (or atomic) mass units. A proton was accelerated from rest when it is initially very far away from a bismuth nucleus and acquired a speed v_i . The proton approaches the bismuth nucleus head-on and from this interaction the proton is brought momentarily to rest at a distance of $3r_N$.

a. What was the initial speed v_i of the proton when it was very far away from the bismuth nucleus?

b. Through what potential difference was the proton accelerated to give it the speed in part a? Assume the proton started from rest.

c. Particle accelerators, like those used to accelerate the proton in part b, are modeled as capacitors. Suppose the maximum charge that was stored on the capacitor used in this particle accelerator when fully charged was $Q_{max} = 42.7\mu C$. If the initially uncharged capacitor was charged through a $R = 120G\Omega$ resistor, what is the time constant for the charging circuit?

d. Assuming that the capacitor in part c was initially uncharged, how long does it take to store 84% of the total potential energy in the system?

Physics 111 Formula Sheet

Electrostatics

$$F = k \frac{q_1 q_2}{r^2}$$

$$\vec{F} = q \vec{E}; \quad E_{pc} = k \frac{q}{r^2}; \quad E_{plate} = \frac{q}{\epsilon_0 A}$$

$$E = -\frac{\Delta V}{\Delta x}$$

$$V_{pc} = k \frac{q}{r}$$

$$U_e = k \frac{q_1 q_2}{r} = qV$$

$$W = -q\Delta V = -\Delta U_e = \Delta K$$

Electric Circuits - Capacitors

$$Q = CV; \quad C = \frac{\kappa \epsilon_0 A}{d}$$

$$C_{parallel} = \sum_{i=1}^N C_i$$

$$\frac{1}{C_{series}} = \sum_{i=1}^N \frac{1}{C_i}$$

$$Q_{charging}(t) = Q_{max} \left(1 - e^{-\frac{t}{\tau}} \right)$$

$$Q_{discharging}(t) = Q_{max} e^{-\frac{t}{\tau}}$$

$$I(t) = I_{max} e^{-\frac{t}{\tau}} = \frac{Q_{max}}{\tau} e^{-\frac{t}{\tau}}$$

$$\tau = RC$$

$$U_C = \frac{1}{2} qV = \frac{1}{2} CV^2 = \frac{Q^2}{2C}$$

Light as a Wave

$$c = f\lambda$$

$$S(t) = \frac{\text{Energy}}{\text{time} \times \text{Area}} = c \epsilon_0 E^2(t) = c \frac{B^2(t)}{\mu_0}$$

$$I = S_{avg} = \frac{1}{2} c \epsilon_0 E_{max}^2 = c \frac{B_{max}^2}{2\mu_0}$$

$$P = \begin{cases} \frac{S}{c}; & \text{absorbed} \\ \frac{2S}{c}; & \text{reflected} \end{cases}$$

$$S = S_0 \cos^2 \theta$$

$$v = \frac{c}{n}$$

$$\theta_{\text{incident}} = \theta_{\text{reflected}}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$P = \frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i}$$

$$M = \frac{d_i}{d_0}; \quad |M| = \frac{h_i}{h_0}$$

Magnetism

$$\vec{F} = q \vec{v} \times \vec{B} \rightarrow F = qvB \sin \theta$$

$$\vec{F} = I \vec{L} \times \vec{B} \rightarrow F = ILB \sin \theta$$

$$V_{Hall} = w v_d B$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$\varepsilon = \Delta V = -N \frac{\Delta \phi_B}{\Delta t}$$

$$\phi_B = BA \cos \theta$$

Electric Circuits - Resistors

$$I = \frac{\Delta Q}{\Delta t}$$

$$I = neAv_d; \quad n = \frac{\rho N_A}{m}$$

$$V = IR$$

$$R = \frac{\rho L}{A}$$

$$R_{series} = \sum_{i=1}^N R_i$$

$$\frac{1}{R_{parallel}} = \sum_{i=1}^N \frac{1}{R_i}$$

$$P = \frac{\Delta E}{\Delta t} = IV = I^2 R = \frac{V^2}{R}$$

Light as a Particle/Relativity

$$E = hf = \frac{hc}{\lambda}$$

$$K_{max} = hf - \phi$$

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi)$$

$$\frac{1}{E'} = \frac{1}{E} + \frac{(1-\cos \phi)}{E_{rest}}; \quad E_{rest} = mc^2$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$p = \gamma mv$$

$$E_{total} = E_{rest} + K = \gamma mc^2$$

$$K = (\gamma - 1)mc^2$$

$$E_{total}^2 = p^2 c^2 + m^2 c^4$$

Nuclear Physics

$$N = N_0 e^{-\lambda t}$$

$$m = m_0 e^{-\lambda t}$$

$$A = A_0 e^{-\lambda t}$$

$$A = \lambda N$$

$$t_1 = \frac{\ln 2}{\lambda}$$

Constants

$$g = 9.8 \frac{m}{s^2}$$

$$1e = 1.6 \times 10^{-19} C$$

$$k = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \frac{Nm^2}{C^2}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{Nm^2}$$

$$1eV = 1.6 \times 10^{-19} J$$

$$\mu_0 = 4\pi \times 10^{-7} \frac{Tm}{A}$$

$$c = 3 \times 10^8 \frac{m}{s}$$

$$h = 6.63 \times 10^{-34} Js = 4.14 \times 10^{-15} eVs$$

$$N_A = 6.02 \times 10^{23}$$

$$1u = 1.66 \times 10^{-27} kg = 931.5 \frac{MeV}{c^2}$$

$$m_p = 1.67 \times 10^{-27} kg = 937.1 \frac{MeV}{c^2}$$

$$m_n = 1.69 \times 10^{-27} kg = 948.3 \frac{MeV}{c^2}$$

$$m_e = 9.11 \times 10^{-31} kg = 0.511 \frac{MeV}{c^2}$$

Physics 110 Formulas

$$\vec{F} = m\vec{a}; \quad F_G = \frac{GM_1m_2}{r^2}; \quad F_s = -ky; \quad a_c = \frac{v^2}{r}$$

$$W = -\Delta U_g - \Delta U_s = \Delta K$$

$$U_g = mgy$$

$$U_s = \frac{1}{2}ky^2$$

$$K = \frac{1}{2}mv^2$$

$$\vec{r}_f = \vec{r}_i + \vec{v}_i t + \frac{1}{2}\vec{a}t^2$$

$$\vec{v}_f = \vec{v}_i + \vec{a}t$$

$$v_f^2 = v_i^2 + 2a_r\Delta r$$

Common Metric Units

$$nano (n) = 10^{-9}$$

$$micro (\mu) = 10^{-6}$$

$$milli (m) = 10^{-3}$$

$$centi (c) = 10^{-2}$$

$$kilo (k) = 10^3$$

$$mega (M) = 10^6$$

Geometry/Algebra

$$\text{Circles: } A = \pi r^2 \quad C = 2\pi r = \pi$$

$$\text{Spheres: } A = 4\pi r^2 \quad V = \frac{4}{3}\pi r^3$$

$$\text{Triangles: } A = \frac{1}{2}bh$$

$$\text{Quadratics: } ax^2 + bx + c = 0 \rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

PERIODIC TABLE OF ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18																																																																																																																																										
1 H Hydrogen 1.008	2 He Helium 4.0026	3 Li Lithium 6.94	4 Be Beryllium 9.0122	5 B Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.0107	8 O Oxygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180	11 Na Sodium 22.990	12 Mg Magnesium 24.305	13 Al Aluminum 26.982	14 Si Silicon 28.085	15 P Phosphorus 30.974	16 S Sulfur 32.06	17 Cl Chlorine 35.45	18 Ar Argon 39.948																																																																																																																																										
C Solid	Hg Liquid	H Gas	RF Unknown	Metals				Nonmetals				Metalloids				Halogens																																																																																																																																											
3 Li Lithium 6.94	4 Be Beryllium 9.0122	5 B Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.0107	8 O Oxygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180	11 Na Sodium 22.990	12 Mg Magnesium 24.305	13 Al Aluminum 26.982	14 Si Silicon 28.085	15 P Phosphorus 30.974	16 S Sulfur 32.06	17 Cl Chlorine 35.45	18 Ar Argon 39.948	19 K Potassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.867	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.845	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.38	31 Ga Gallium 69.723	32 Ge Germanium 72.630	33 As Arsenic 74.922	34 Se Selenium 78.971	35 Br Bromine 79.904	36 Kr Krypton 83.798																																																																																																																										
4 K Potassium 39.098	5 Ca Calcium 40.078	6 Sc Scandium 44.956	7 Ti Titanium 47.867	8 V Vanadium 50.942	9 Cr Chromium 51.996	10 Mn Manganese 54.938	11 Fe Iron 55.845	12 Co Cobalt 58.933	13 Ni Nickel 58.693	14 Cu Copper 63.546	15 Zn Zinc 65.38	16 Ga Gallium 69.723	17 Ge Germanium 72.630	18 As Arsenic 74.922	19 Se Selenium 78.971	20 Br Bromine 79.904	21 Kr Krypton 83.798	22 Rb Rubidium 85.468	23 Sr Strontium 87.62	24 Y Yttrium 91.224	25 Zr Zirconium 92.206	26 Nb Niobium 91.956	27 Mo Molybdenum 95.99	28 Tc Technetium 97.007	29 Ru Ruthenium 101.07	30 Rh Rhodium 104.42	31 Pd Palladium 106.42	32 Ag Silver 107.87	33 Cd Cadmium 112.41	34 In Indium 114.82	35 Sn Tin 117.81	36 Pb Lead 121.73	37 Te Tellurium 127.60	38 I Iodine 126.90	39 Xe Xenon 131.29																																																																																																																								
5 Rb Rubidium 85.468	6 Sr Strontium 87.62	7 Y Yttrium 88.906	8 Zr Zirconium 91.224	9 Nb Niobium 92.206	10 Mo Molybdenum 95.99	11 Tc Technetium 97.007	12 Ru Ruthenium 101.07	13 Rh Rhodium 104.42	14 Pd Palladium 106.42	15 Ag Silver 107.87	16 Cd Cadmium 112.41	17 In Indium 114.82	18 Sn Tin 117.81	19 Pb Lead 121.73	20 Te Tellurium 127.60	21 I Iodine 126.90	22 Xe Xenon 131.29	23 Cs Cesium 132.91	24 Ba Barium 137.33	25 La Lanthanum 138.91	26 Ce Cerium 140.912	27 Pr Praseodymium 141.91	28 Nd Neodymium 144.24	29 Pm Promethium 145.00	30 Sm Samarium 150.36	31 Eu Europium 151.96	32 Gd Gadolinium 157.25	33 Tb Thulium 168.93	34 Dy Dysprosium 162.50	35 Ho Holmium 164.93	36 Er Erbium 167.26	37 Tm Thulium 168.93	38 Yb Ytterbium 173.05	39 Lu Lutetium 174.97																																																																																																																									
55 Cs Cesium 132.91	56 Ba Barium 137.33	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.34	75 Os Osmium 186.21	76 Se Selenium 189.23	77 Hg Mercury 195.09	78 Au Gold 196.97	79 Hg Mercury 200.59	80 Tl Thallium 204.38	81 Pb Lead 207.23	82 Bi Bismuth 208.98	83 Po Polonium 209.20	84 At Astatine 210.20	85 Rn Radon 222.00	86 At Astatine 222.00	87 Fr Francium 223.00	88 Ra Radium 226.00	89 Ac Actinium 227.00	90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium 237.00	94 Pu Plutonium 247.00	95 Am Americium 243.00	96 Cm Curium 247.00	97 Bk Berkelium 247.00	98 Cf Californium 247.00	99 Es Einsteinium 252.00	100 Fm Fermium 258.00	101 Md Mendelevium 258.00	102 No Nobelium 256.00	103 Lr Lawrencium 266.00																																																																																																																									
89 Ac Actinium 227.00	90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium 237.00	94 Pu Plutonium 247.00	95 Am Americium 243.00	96 Cm Curium 247.00	97 Bk Berkelium 247.00	98 Cf Californium 247.00	99 Es Einsteinium 252.00	100 Fm Fermium 258.00	101 Md Mendelevium 258.00	102 No Nobelium 256.00	103 Lr Lawrencium 266.00	104 Hg Thallium 266.00	105 Db Dubnium 268.00	106 Sg Seaborgium 269.00	107 Bh Bohrium 270.00	108 Hs Hassium 277.00	109 Mt Methylplonium 278.00	110 Ds Darmstadtium 281.00	111 Rg Rutherfordium 282.00	112 Cn Copernicium 285.00	113 Nh Nihonium 290.00	114 Fl Flerovium 289.00	115 Mc Moscovium 290.00	116 Lv Livermorium 293.00	117 Ts Tennessee 294.00	118 Og Oganesson 294.00	119 Ts Tennessee 294.00	120 Hg Thallium 294.00	121 Hg Thallium 294.00	122 Hg Thallium 294.00	123 Hg Thallium 294.00	124 Hg Thallium 294.00	125 Hg Thallium 294.00	126 Hg Thallium 294.00	127 Hg Thallium 294.00	128 Hg Thallium 294.00	129 Hg Thallium 294.00	130 Hg Thallium 294.00	131 Hg Thallium 294.00	132 Hg Thallium 294.00	133 Hg Thallium 294.00	134 Hg Thallium 294.00	135 Hg Thallium 294.00	136 Hg Thallium 294.00	137 Hg Thallium 294.00	138 Hg Thallium 294.00	139 Hg Thallium 294.00	140 Hg Thallium 294.00	141 Hg Thallium 294.00	142 Hg Thallium 294.00	143 Hg Thallium 294.00	144 Hg Thallium 294.00	145 Hg Thallium 294.00	146 Hg Thallium 294.00	147 Hg Thallium 294.00	148 Hg Thallium 294.00	149 Hg Thallium 294.00	150 Hg Thallium 294.00	151 Hg Thallium 294.00	152 Hg Thallium 294.00	153 Hg Thallium 294.00	154 Hg Thallium 294.00	155 Hg Thallium 294.00	156 Hg Thallium 294.00	157 Hg Thallium 294.00	158 Hg Thallium 294.00	159 Hg Thallium 294.00	160 Hg Thallium 294.00	161 Hg Thallium 294.00	162 Hg Thallium 294.00	163 Hg Thallium 294.00	164 Hg Thallium 294.00	165 Hg Thallium 294.00	166 Hg Thallium 294.00	167 Hg Thallium 294.00	168 Hg Thallium 294.00	169 Hg Thallium 294.00	170 Hg Thallium 294.00	171 Hg Thallium 294.00	172 Hg Thallium 294.00	173 Hg Thallium 294.00	174 Hg Thallium 294.00	175 Hg Thallium 294.00	176 Hg Thallium 294.00	177 Hg Thallium 294.00	178 Hg Thallium 294.00	179 Hg Thallium 294.00	180 Hg Thallium 294.00	181 Hg Thallium 294.00	182 Hg Thallium 294.00	183 Hg Thallium 294.00	184 Hg Thallium 294.00	185 Hg Thallium 294.00	186 Hg Thallium 294.00	187 Hg Thallium 294.00	188 Hg Thallium 294.00	189 Hg Thallium 294.00	190 Hg Thallium 294.00	191 Hg Thallium 294.00	192 Hg Thallium 294.00	193 Hg Thallium 294.00	194 Hg Thallium 294.00	195 Hg Thallium 294.00	196 Hg Thallium 294.00	197 Hg Thallium 294.00	198 Hg Thallium 294.00	199 Hg Thallium 294.00	200 Hg Thallium 294.00	201 Hg Thallium 294.00	202 Hg Thallium 294.00	203 Hg Thallium 294.00	204 Hg Thallium 294.00	205 Hg Thallium 294.00	206 Hg Thallium 294.00	207 Hg Thallium 294.00	208 Hg Thallium 294.00	209 Hg Thallium 294.00	210 Hg Thallium 294.00	211 Hg Thallium 294.00	212 Hg Thallium 294.00	213 Hg Thallium 294.00	214 Hg Thallium 294.00	215 Hg Thallium 294.00	216 Hg Thallium 294.00	217 Hg Thallium 294.00	218 Hg Thallium 294.00	219 Hg Thallium 294.00	220 Hg Thallium 294.00	221 Hg Thallium 294.00	222 Hg Thallium 294.00	223 Hg Thallium 294.00	224 Hg Thallium 294.00	225 Hg Thallium 294.00	226 Hg Thallium 294.00	227 Hg Thallium 294.00	228 Hg Thallium 294.00	229 Hg Thallium 294.00	230 Hg Thallium 294.00	231 Hg Thallium 294.00	232 Hg Thallium 294.00	233 Hg Thallium 294.00	234 Hg Thallium 294.00	235 Hg Thallium 294.00	236 Hg Thallium 294.00	237 Hg Thallium 294.00	238 Hg Thallium 294.00	239 Hg Thallium 294.00	240 Hg Thallium 294.00	241 Hg Thallium 294.00	242 Hg Thallium 294.00	243 Hg Thallium 294.00	