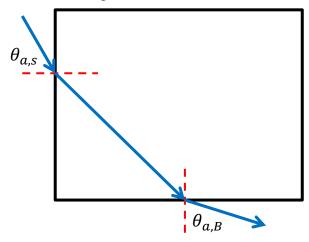
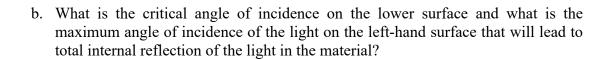
Physics 111

Exam #3

November 3, 2025


Please read and follow these instructions carefully:

- Read all problems carefully before attempting to solve them.
- Your work must be legible, and the organization clear.
- You must show all work, including correct vector notation.
- You will not receive full credit for correct answers without adequate explanations.
- You will not receive full credit if incorrect work or explanations are mixed in with correct work. So, erase or cross out anything you don't want graded.
- Make explanations complete but brief. Do not write a lot of prose.
- Include diagrams.
- Show what goes into a calculation, not just the final number. For example, $|\vec{p}| \approx m|\vec{v}| = (5kg) \times (2\frac{m}{s}) = 10\frac{kg \cdot m}{s}$
- Give standard SI units with your results unless specifically asked for a certain unit.
- Unless specifically asked to derive a result, you may start with the formulas given on the formula sheet including equations corresponding to the fundamental concepts.
- Go for partial credit. If you cannot do some portion of a problem, invent a symbol and/or value for the quantity you can't calculate (explain that you are doing this), and use it to do the rest of the problem.
- Each free-response part is worth 6 points.


Problem #1	/24
Problem #2	/24
Problem #3	/24
Total	/72

I affirm that I have carried out my academic endeavors with full academic honesty.

1. Light from a blue laser pointer, rated at 2mW, is aimed at a block of transparent material of unknown index of refraction n_m . The block of material is surrounded on all sides by air and the light strikes the left-hand side at $\theta_{a,S}=45^{\circ}$ and exits the bottom at $\theta_{a,B}=76^{\circ}$, as shown in the diagram below.

a. What is the index of refraction of the material? You may need the fact that $sin(90 - \alpha) = cos \alpha$.

c. Suppose the blue light that exits the transparent material is incident on a calcium surface ($\phi = 2.9eV$). Electrons are ejected with a maximum kinetic energy 0.12eV. What is the wavelength (in nm) of the blue light that was used?

- 2. Students were conducting a laboratory experiment involving a thin converging lens. Objects are placed at various distances from the lens and data are taken on the corresponding real image distances, where the object and image distances were all measured in millimeters. A plot of $\frac{1}{d_0}$ versus $\frac{1}{d_i}$ was generated and the equation of the fit to the data was found to be y = -0.98x + 0.021.
 - a. Suppose that the converging lens is placed in a holder and an object is placed to the left of the lens and a screen to the right of the lens. The object to screen distance is fixed at D = 240mm. At what position(s) can the lens be placed, with respect to the object, so that a sharp image is formed on the screen?

b. For the position(s) in part a, what will be the image size of a 1cm tall object on the screen?

c. Suppose that the lens from part a (call it lens A) is used in combination with a second lens (call this lens B) of unknown focal length f_B . A 1cm tall object is placed 75mm to the left of lens B and Lens A is placed 50mm to the right of lens B. In this configuration a real image is seen 67mm to the right of lens A. What type of lens is lens B and what is its focal length?

d. Lenses of type B are used as corrective lenses in a pair of glasses. What refractive error of the eye will these lenses correct. Be sure explain what the eye condition is and why theses lenses are the appropriate corrective type. What prescription would the eye doctor need to write for these set of glasses?

- 3. X-rays from a mercury light source with wavelength $\lambda = 0.0176nm$ are incident on a block of carbon.
 - a. What is the energy (to three decimal places and in keV), momentum (in $\frac{keV}{c}$) and frequency (in Hz or s^{-1}) of the incident mercury x-rays?

b. If the x-rays are observed to scatter through an angle $\phi = 160^{\circ}$, what is the energy (in *keV* and to three decimal places) of the scattered x-rays?

c.	Expressed as a fraction of the speed of light, what is the speed of the scattered electron?
d	At what angle θ was the electron scattered through? Measure your angle with
u.	respect to the direction of the incident x-rays, taken to be 0° .

Physics 111 Formula Sheet

Electrostatics

$$\begin{split} F &= k \frac{q_1 q_2}{r^2} \\ \vec{F} &= q \vec{E}; \quad E_{pc} = k \frac{q}{r^2}; \quad E_{plate} = \frac{q}{\epsilon_0 A} \\ E &= -\frac{\Delta V}{\Delta x} \\ V_{pc} &= k \frac{q}{r} \\ U_e &= k \frac{q_1 q_2}{r} = q V \\ W &= -q \Delta V = -\Delta U_e = \Delta K \end{split}$$

Electric Circuits - Capacitors

$$Q = CV; \quad C = \frac{\kappa \epsilon_0 A}{d}$$

$$C_{parallel} = \sum_{i=1}^{N} C_i$$

$$\frac{1}{C_{series}} = \sum_{i=1}^{N} \frac{1}{c_i}$$

$$Q_{charging}(t) = Q_{max} \left(1 - e^{-\frac{t}{\tau}}\right)$$

$$Q_{discharging}(t) = Q_{max} e^{-\frac{t}{\tau}}$$

$$I(t) = I_{max} e^{-\frac{t}{\tau}} = \frac{Q_{max}}{\tau} e^{-\frac{t}{\tau}}$$

$$\tau = RC$$

$$U_C = \frac{1}{2} qV = \frac{1}{2} CV^2 = \frac{Q^2}{2C}$$

Light as a Wave

Light as a wave
$$c = f\lambda$$

$$S(t) = \frac{\text{Energy}}{\text{time} \times \text{Area}} = c\epsilon_0 E^2(t) = c \frac{B^2(t)}{\mu_0}$$

$$I = S_{avg} = \frac{1}{2}c\epsilon_0 E_{max}^2 = c \frac{B_{max}^2}{2\mu_0}$$

$$P = \begin{cases} \frac{S}{c}; & \text{absorbed} \\ \frac{2S}{c}; & \text{reflected} \end{cases}$$

$$S = S_0 \cos^2 \theta$$

$$v = \frac{c}{n}$$

$$\theta_{\text{incident}} = \theta_{\text{reflected}}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$P = \frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i}$$

$$M = \frac{d_i}{d_c}; \quad |M| = \frac{h_i}{h_c}$$

Magnetism

$$\vec{F} = q\vec{v} \times \vec{B} \to F = qvB \sin \theta$$

$$\vec{F} = I\vec{L} \times \vec{B} \to F = ILB \sin \theta$$

$$V_{Hall} = wv_dB$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$\varepsilon = \Delta V = -N \frac{\Delta \phi_B}{\Delta t}$$

$$\phi_B = BA \cos \theta$$

Electric Circuits - Resistors

$$I = \frac{\Delta Q}{\Delta t}$$

$$I = neAv_d; \quad n = \frac{\rho N_A}{m}$$

$$V = IR$$

$$R = \frac{\rho L}{A}$$

$$R_{series} = \sum_{i=1}^{N} R_i$$

$$\frac{1}{R_{parallel}} = \sum_{i=1}^{N} \frac{1}{R_i}$$

$$P = \frac{\Delta E}{\Delta t} = IV = I^2 R = \frac{V^2}{R}$$

Light as a Particle/Relativity

$$E = hf = \frac{hc}{\lambda}$$

$$K_{max} = hf - \phi$$

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi)$$

$$\frac{1}{E'} = \frac{1}{E} + \frac{(1 - \cos \phi)}{E_{rest}}; \quad E_{rest} = mc^2$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$p = \gamma mv$$

$$E_{total} = E_{rest} + K = \gamma mc^2$$

$$K = (\gamma - 1)mc^2$$

$$E_{total}^2 = p^2c^2 + m^2c^4$$

Nuclear Physics

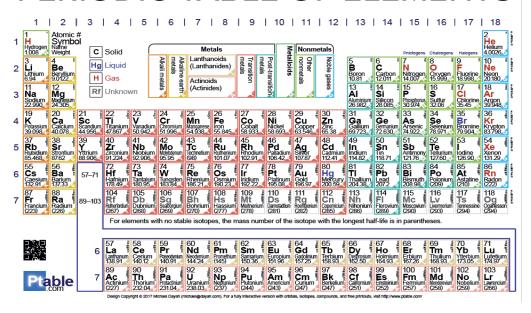
$$\begin{split} N &= N_0 e^{-\lambda t} \\ m &= m_0 e^{-\lambda t} \\ A &= A_0 e^{-\lambda t} \\ A &= \lambda N \\ t_{\frac{1}{2}} &= \frac{\ln 2}{\lambda} \end{split}$$

Constants

$$\begin{split} g &= 9.8 \frac{m}{s^2} \\ 1e &= 1.6 \times 10^{-19} C \\ k &= \frac{1}{4\pi\epsilon_0} = 9 \times 10^{9} \frac{Nm^2}{c^2} \\ \epsilon_0 &= 8.85 \times 10^{-12} \frac{c^2}{Nm^2} \\ 1eV &= 1.6 \times 10^{-19} J \\ \mu_0 &= 4\pi \times 10^{-7} \frac{Tm}{A} \\ c &= 3 \times 10^{8} \frac{m}{s} \\ h &= 6.63 \times 10^{-34} Js = 4.14 \times 10^{-15} eVs \\ N_A &= 6.02 \times 10^{23} \\ 1u &= 1.66 \times 10^{-27} kg = 931.5 \frac{MeV}{c^2} \\ m_p &= 1.67 \times 10^{-27} kg = 937.1 \frac{MeV}{c^2} \\ m_n &= 1.69 \times 10^{-27} kg = 948.3 \frac{MeV}{c^2} \\ m_e &= 9.11 \times 10^{-31} kg = 0.511 \frac{MeV}{c^2} \end{split}$$

Physics 110 Formulas

$$\begin{split} \vec{F} &= m\vec{a}; \quad F_G = \frac{GM_1m_2}{r^2}; \quad F_S = -ky; \quad a_c = \frac{v^2}{r} \\ W &= -\Delta U_g - \Delta U_S = \Delta K \\ U_g &= mgy \\ U_S &= \frac{1}{2}ky^2 \\ K &= \frac{1}{2}mv^2 \\ \vec{r}_f &= \vec{r}_i + \vec{v}_i t + \frac{1}{2}\vec{a}t^2 \\ \vec{v}_f &= \vec{v}_i + \vec{a}t \\ v_f^2 &= v_i^2 + 2a_r\Delta r \end{split}$$


Common Metric Units

nano (n) =
$$10^{-9}$$

micro (μ) = 10^{-6}
milli (m) = 10^{-3}
centi (c) = 10^{-2}
kilo (k) = 10^{3}
mega (M) = 10^{6}

Geometry/Algebra

 $A = \pi r^2$ $C = 2\pi r = \pi$ Circles: $A = 4\pi r^2 \qquad V = \frac{4}{3}\pi r^3$ Spheres: Triangles: $A = \frac{1}{2}bh$ $ax^2 + bx + c = 0 \rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{a}$ Quadratics:

PERIODIC TABLE OF ELEMENTS

