
Experiment #2:  Resistor Capacitor Circuits 

 

Introduction:  We have seen how a capacitor charges and how that same capacitor discharges 

through a resistor from class by applying conservation of energy to a circuit.  In a circuit with a 

switch 𝑆, resistor 𝑅, and battery 𝑉, the capacitor  𝐶, charges according to equation 2.1 

 

𝑄(𝑡) = 𝑄𝑚𝑎𝑥 (1 − 𝑒− 
𝑡

𝜏)     (2.1). 

 

Removing the battery 𝑉 from the circuit and connecting the resistor 𝑅 to the capacitor 𝐶, the 

capacitor discharges following equation 2.2. 

 

𝑄(𝑡) = 𝑄𝑚𝑎𝑥𝑒− 
𝑡

𝜏     (2.2). 

 

Experimentally it is difficult to measure the charge that is flowing onto the plates of the capacitor 

as it charges or discharges.  Charging or discharging the capacitor produces a potential difference 

across the plates of the capacitor and this potential difference is related to the charge by by equation 

2.3.  

 

𝑄 = 𝐶𝑉    (2.3), 

 

where 𝐶 is the capacitance of the system.  Therefore, the charging and discharging equations may 

be written in terms of the potential differences across the capacitor as functions of time.  For the 

charging capacitor we have 

 

𝑉(𝑡) = 𝑉𝑚𝑎𝑥 (1 − 𝑒− 
𝑡

𝜏)     (2.4), 

 

while for the discharging capacitor 

 

𝑉(𝑡) = 𝑉𝑚𝑎𝑥𝑒− 
𝑡

𝜏     (2.5). 

 

In the resistor-capacitor circuit, there is a characteristic time it takes to put approximately 63% of 

the charge onto (or for the potential difference across) the plates of the capacitor, or to remove 

63% of the charge from (or the potential difference across) the plates of the capacitor.  We call 

this characteristic time 𝜏, or the time constant of the circuit.  The time constant of the circuit, 

whether charging or discharging, is given by the product of the resistance and capacitance of the 

circuit,  

 

𝜏 = 𝑅𝐶    (2.6). 

 

In this laboratory experiment, we will investigate the charging and discharging of a capacitor 

through a resistor and the dependance of the time constant of the discharging circuit on the 

resistance and capacitance. The circuit that we will use to charge and discharge the capacitor is 

shown in Figure 2.1 below.  A double-pole switch 𝑆 connects the capacitor 𝐶 either to a resistor 𝑅 

and a power supply 𝑉 to charge the capacitor or it connects the resistor 𝑅 and capacitor 𝐶 together 



to investigate the discharge of the capacitor.  The resistor 𝑅 is a variable resistance and can be 

changed throughout the experiment. 
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Figure 2.1:  Schematic wiring diagram to study the charging and discharging 

of a capacitor 𝐶 through a resistor 𝑅. 

𝑅 



Experiment #2 Resistor-Capacitor Circuits Pre-Laboratory Exercises 

 

Read laboratory experiment #2 on the resistor-capacitor circuit, then answer the following 

questions in complete sentences.  Be sure to print out and hand in any data and graphs you made 

along with the answers to these questions.  The pre-laboratory exercise is due at the beginning of 

the laboratory period and late submissions will not be accepted. 

 

1. A capacitor is constructed out of two parallel metal plates separated by a distance 𝑑 = 0.5𝑚𝑚.  

The plates are rectangular defined by the width 𝑊 = 25𝑐𝑚 and length 𝐿 = 250𝑐𝑚.  If the 

plates are held apart by an insulating material with dielectric constant 𝜅 = 210, what is the 

capacitance 𝐶 of the system? 

 

 

 

 

 

 

 

 

 

 

 

2. The capacitor in question #1 is wired to a 12𝑉 battery, a switch 𝑆, and an unknown resistor 𝑅 

shown in Figure PLE2.1. At time 𝑡 = 0 the switch 𝑆 is closed and the capacitor 𝐶 begins to 

charge through the resistor 𝑅.  Data are taken on the potential difference 𝑉𝐶 across the capacitor 

as a function of time 𝑡 and the data are given in table PLE2.1 below.  Plot the data of the 

potential difference 𝑉𝐶 across the capacitor (on the y-axis) as a function of time 𝑡 (on the x-

axis).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑡 (𝑠) 𝑉𝐶(𝑉) 

0 0.00 

10 1.84 

20 3.40 

30 4.72 

40 5.84 

50 6.78 

60 7.59 

70 8.26 

80 8.84 

90 9.32 

100 9.73 

110 10.08 

120 10.38 

130 10.63 

140 10.84 

150 11.01 

160 11.17 

170 11.29 

180 11.40 

190 11.49 

200 11.57 
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Figure PLE2.1:  Schematic wiring diagram showing a capacitor C 

charging through an unknown resistor R. 

𝑅 

𝑉𝐶  

Table PLE2.1:  Potential 

difference across a capacitor C 

charging through an unknown 

resistor R as a function of time. 



3. From the plot 𝑉𝐶 of versus 𝑡, fit the data with an equation of the form given by equation 2.4.   

You will have to fit the data by hand as Excel and Google Sheets do not have equation 2.4 as 

a curve fit option.  To do this you will need to construct your own curve fit to the data and then 

overlay the curve fit to the original data in the plot.  Using the same times given in Table 

PLE2.1 and equation 2.4 determine a suitable value for 𝑉𝑚𝑎𝑥 and a guess for 𝜏.  A good value 

to start with is 𝑉𝑚𝑎𝑥 = 12𝑉.  You may have to adjust this value to get a good fit.  That’s 

experimental uncertainty.  Using your equation, generate a column of potential differences and 

add these data to your original data.  You’ll probably notice that the two curves do not overlay 

on top of each other.  To get them to overlay and to fit the curve, you will have to adjust the 

value of the time constant 𝜏.  As you change 𝜏, the curve will shift.  Keep changing the value 

of 𝜏 until you get the two sets of data to overlay each other.  You may have to adjust 𝑉𝑚𝑎𝑥 too. 

The fit to the data is good when you can no longer see any difference between the data and 

your curve fit.  When you’ve achieved a good curve fit to the data, enter your equation of the 

fit below. 

 

 

𝑉𝐶(𝑡) = 

 

 

 

4. From the curve fit to the data that you constructed, what is the time constant 𝜏 of the resistor-

capacitor circuit?  Explain how you determined the time constant of the circuit and enter the 

value of the time constant below. 

 

𝜏 = 

 

 

 

 

 

 

 

5. Using your value of the capacitance 𝐶and time constant 𝜏, what is the value of the unknown 

resistor 𝑅 that was used in the charging circuit?  Show your calculation and enter your value 

below. 

 

𝑅 = 

 

 

 

 

 

 

 

 

 



Experimental Procedure: 

We will be using a computer program called Pasco Capstone to collect data.  Open Capstone from 

the desktop and click hardware setup from the left-hand side of the screen.  On the data collection 

box that appears on the screen click the large yellow circle labeled 𝐴 and from the drop-down 

menu choose voltage sensor.  If you get a yellow triangle after choosing voltage sensor, consult 

your instructor.  If you get no error messages, close the hardware setup box by clicking hardware 

setup again. 

 

From the choices on the screen, select sensor data and this should give you a graph of voltage (on 

the y-axis) and time (on the x-axis).  If you don’t see this screen consult your instructor.  You are 

now ready to collect data. 

 

Activity 1: Time dependence of the potential difference across the charging capacitor  

 

If the circuit in Figure 1 is not wired, wire it now according to the figure.  Have your instructor 

check the circuit before you begin and be sure to observe the polarity of the capacitor and do 

not set R to zero.  

 

Set both variable resistor boxes to a resistance of 𝑅 = 10𝑘Ω, and wire the circuit with the blue 

capacitor 𝐶1 = 10000𝜇𝐹 = 0.01𝐹.  Move the double pole switch 𝑆 to the left to connect the 

battery 𝑉, resistor 𝑅, and capacitor 𝐶1 together and at the same time on Capstone, click record.  

You should see the voltage across the capacitor changing as a function of time and it should be 

increasing.  Collect (record) data for a time 𝑡 = 300𝑠.   After a time 𝑡 = 300𝑠 stop the data 

collection and from the curve fit choices drop-down menu select Inverse Exponent.  This will 

generate a fit to your data. Record the equation of the curve fit below and print your plot.  

 

 

Capacitor Charging:  𝑉(𝑡) =  

 

       

Activity 2: Time dependence of the potential difference across the charging capacitor  

 

After you have printed your plot clear the data. When ready, move the double pole switch 𝑆 to the 

right to connect the resistor 𝑅 and capacitor 𝐶1 together and at the same time click record on 

Capstone.  You should see the voltage across the capacitor changing as a function of time and it 

should be decreasing.  Collect data for a time 𝑡 = 300𝑠 and then click stop to end the data 

collection.  From the curve fit choices drop-down menu select Natural Exponent.  This will 

generate a fit to your data. Record the equation of the curve fit below and print your plot.  

 

 

Capacitor Discharging:  𝑉(𝑡) =       

 

 

 

 

 



Activity 3: Dependance of the time constant 𝜏 on 𝑅 for a fixed 𝐶?  

We will determine how the time constant of the circuit 𝜏 depends on the values of the resistance 𝑅 

and capacitance 𝐶 for a fixed value of 𝐶.  Using the same blue capacitor (𝐶1 = 0.01𝐹) that you 

used in to charge and discharge the capacitor in activities 1 & 2, set the decade resistance box 

connected between the battery 𝑉 and capacitor 𝐶 to a value 𝑅𝑙𝑒𝑓𝑡 = 1000Ω and do not change this 

value for the remainder of the experiment.  This will allow the capacitor to charge quickly when 

the battery and capacitor are connected.  Now set the other resistance box to a value of 𝑅 = 5𝑘Ω.  

Move the double pole switch 𝑆 to the left to charge the capacitor for a time 𝑡 = 60𝑠 and then move 

the double pole switch 𝑆 to the right to connect the 𝑅 = 5𝑘Ω resistor and 𝐶1 = 0.01𝐹 capacitor 

together.  At the same time as you move the switch to the right click record data on Capstone.  

After a reasonable amount of data has been collected, stop the data collection and from the curve 

fit choices drop-down menu select Natural Exponent.  Record the equation of the fit below and 

determine the experimental value of the time constant of the circuit, 𝜏𝑒𝑥𝑝𝑡 . 

 

𝑉5𝑘Ω(𝑡) =       𝜏𝑒𝑥𝑝𝑡,5𝑘Ω = 

 

 

Repeat the previous step setting the resistance box to the right of the double pole switch 𝑆 to values 

of 𝑅 = 2.5𝑘Ω and 𝑅 = 1.25𝑘Ω.  Before you make measurements, you will have to recharge the 

capacitor with the battery for a time 𝑡 = 60𝑠.  At the same time as you move the switch to the right 

click record data on Capstone.  After a reasonable amount of data has been collected, stop the data 

collection and from the curve fit choices drop-down menu select Natural Exponent.  Record the 

equation of the fits below and determine the experimental value of the time constants of each of 

the circuits, 𝜏𝑒𝑥𝑝𝑡 . 

 

𝑉2.5𝑘Ω(𝑡) =       𝜏𝑒𝑥𝑝𝑡,2.5𝑘Ω = 

 

𝑉1.25𝑘Ω(𝑡) =       𝜏𝑒𝑥𝑝𝑡,1.25𝑘Ω = 

 

 

 

Using Microsoft Excel (or the like), make a plot of the experimental values of the time constants 

(on the y-axis) in seconds as a function of the resistance (on the x-axis) in Ohms for the blue 

capacitor (𝐶1 = 0.01𝐹) and resistances 𝑅 = 10𝑘Ω, 5𝑘Ω, 2.5𝑘Ω, and 1.25𝑘Ω.  Fit the data with a 

power fit and determine the equation of the fit to the data.  Record your fit below and print out 

your data and plot.  The fit should have the form 𝜏 = 𝐴𝑅𝑛, where 𝐴 is the constant of 

proportionality and 𝑛 is the exponent of 𝑅. 

 

 

Equation of the fit of 𝜏 and 𝑅:  𝜏 = 

 



Activity 4: Dependance of the time constant 𝜏 on 𝐶 for a fixed 𝑅?  

We will determine how the time constant of the circuit 𝜏 depends on the values of the resistance 𝑅 

and capacitance 𝐶 this time for a fixed value of 𝑅.  Unwire the blue capacitor from the circuit in 

Figure 1 and then wire the black capacitor (𝐶2 = 0.015𝐹) in its spot.  Make sure that the decade 

resistance box connected between the battery 𝑉 and capacitor 𝐶 is still set to a value 𝑅𝑙𝑒𝑓𝑡 =

1000Ω.  If it is not, set it to 𝑅𝑙𝑒𝑓𝑡 = 1000Ω and do not change this value for the remainder of the 

experiment.  This will allow the capacitor to charge quickly when the battery and capacitor are 

connected.  Now set the other resistance box to a value of 𝑅 = 5𝑘Ω.  Move the double pole switch 

𝑆 to the left to charge the capacitor for a time 𝑡 = 60𝑠 and then move the double pole switch 𝑆 to 

the right to connect the 𝑅 = 5𝑘Ω resistor and 𝐶2 = 0.015𝐹 capacitor together.  At the same time 

as you move the switch to the right click record data on Capstone.  After a reasonable amount of 

data has been collected, stop the data collection and from the curve fit choices drop-down menu 

select Natural Exponent.  Record the equation of the fit below and determine the experimental 

value of the time constant of the circuit, 𝜏𝑒𝑥𝑝𝑡 . 

 

𝑉𝐶2
(𝑡) =       𝜏𝑒𝑥𝑝𝑡,𝐶2

= 

 

 

Unfortunately, we do not have any more capacitors to wire into the circuit nor do we have a box 

of capacitances that we can select like we do resistances.  To generate two additional value of the 

capacitance we will wire the blue and black capacitors together in series and parallel.   

 

Wire the blue and black capacitors in series by connecting the minus side of one capacitor to the 

plus side of the other capacitor.  Have your instructor check your circuit before you take data.   

 

Move the double pole switch 𝑆 to the left to charge the capacitors wired in series for a time 𝑡 =
60𝑠.  At the same time as you move the switch to the right click record data on Capstone.  After a 

reasonable amount of data has been collected, stop the data collection and from the curve fit 

choices drop-down menu select Natural Exponent.  Record the equation of the fit below and 

determine the experimental value of the time constant of the circuit, 𝜏𝑒𝑥𝑝𝑡 . 

 

 

𝑉𝐶1&2,𝑠𝑒𝑟𝑖𝑒𝑠
(𝑡) =      𝜏𝑒𝑥𝑝𝑡,𝐶1&2,𝑠𝑒𝑟𝑖𝑒𝑠

= 

 

 

Now wire the blue and black capacitors in parallel by connecting the plus side of one capacitor to 

the plus side of the other capacitor (and minus side of one to the minus side of the other).  Have 

your instructor check your circuit before you take data.   

 

 

 

 

 



Move the double pole switch 𝑆 to the left to charge the capacitors wired in series for a time 𝑡 =
120𝑠.  At the same time as you move the switch to the right click record data on Capstone.  After 

a reasonable amount of data has been collected, stop the data collection and from the curve fit 

choices drop-down menu select Natural Exponent.  Record the equation of the fit below and 

determine the experimental value of the time constant of the circuit, 𝜏𝑒𝑥𝑝𝑡 . 

 

 

𝑉𝐶1&2,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
(𝑡) =      𝜏𝑒𝑥𝑝𝑡,𝐶1&2,𝑠𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

= 

 

 

 

Using Microsoft Excel (or the like), make a plot of the experimental values of the time constants 

(on the y-axis) in seconds as a function of the capacitance (on the x-axis) in Farads for the 

resistance (𝑅 = 5000Ω) and capacitances 𝐶1 = 0.01𝐹, 𝐶2 = 0.015𝐹, 𝐶1&2,𝑠𝑒𝑟𝑖𝑒𝑠, and 

𝐶1&2,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 .  To construct this plot, you need values for 𝐶1&2,𝑠𝑒𝑟𝑖𝑒𝑠  and 𝐶1&2,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 .  For the 

moment assume that 𝐶1&2,𝑠𝑒𝑟𝑖𝑒𝑠 = 6000𝜇𝐹 = 0.006𝐹 and 𝐶1&2,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 25000𝜇𝐹 = 0.025𝐹.  

Eventually, we will have to come up with a way to verify these results.  Fit the data with a power 

fit and determine the equation of the fit to the data.  Record your fit below and print out your data 

and plot.  The fit should have the form 𝜏 = 𝐵𝐶𝑚, where 𝐵 is the constant of proportionality and 

𝑚 is the exponent of 𝐶. 

 

 

Equation of the fit of 𝜏 and 𝐶:  𝜏 = 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Data Analysis & Post-Laboratory Exercises 

Based on your data collected, graphs generated, and equations of fits to the data, answer the 

following questions.  Be sure to print out and hand in your data and graphs along with the answers 

to these questions. 

 

Activity 1:  Charging the capacitor 

 

1. From the plot of the data of the potential difference across the charging capacitor as a function 

of time, what is the equation of the fit to the data?  Do the data taken support the form of the 

charging capacitor given in equation 2.4?  Explain. 

 

 

 

 

 

 

 

 

 

 

 

 

2. From the equation of the fit to the data of the potential difference across the charging capacitor 

as a function of time, what is the value of the time constant for the circuit, 𝜏𝑒𝑥𝑝𝑡? 

 

𝜏𝑒𝑥𝑝𝑡 = 

 

 

 

 

 

 

 

 

3. Calculate the theoretical value of the time constant, 𝜏𝑡ℎ𝑒𝑜 form equation 2.6, for the circuit and 

show the calculation below and calculate a percent difference. 

 

𝜏𝑡ℎ𝑒𝑜 = 

 

 

 

 

 

 

 

 



4. From your printed plot of the potential difference across the charging capacitor as a function 

of time, at what time does the potential difference equal 63% of 𝑉𝑚𝑎𝑥?  How does this compare 

to the time constant of the circuit from your curve fit and from the calculation.  Explain your 

result. 

 

 

 

 

 

 

 

 

 

 

 

5. On the set of axes below, what is the approximate shape of the potential difference across the 

resistor as a function of time as the capacitor charges.  Make sure you label the axes with some 

numbers and that the shape has the correct form.  What is the form of the equation that 

describes how the potential difference across the resistor changes as a function of time? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑉𝑅(𝑡) 

𝑡 



Activity 2:  Discharging the capacitor 

 

1. From the plot of the data of the potential difference across the capacitor as a function of time, 

do the data support the discharge according to equation 2.4?  Explain. 

 

 

 

 

 

 

 

 

 

 

 

2. From the equation of the fit to the data of the potential difference across the discharging 

capacitor as a function of time, what is the value of the time constant for the circuit, 𝜏𝑒𝑥𝑝𝑡? 

 

𝜏𝑒𝑥𝑝𝑡 = 

 

 

 

 

 

 

3. Calculate the theoretical value of the time constant, 𝜏𝑡ℎ𝑒𝑜, based on equation 2.6 for the circuit 

and show the calculation below and calculate a percent difference. 

 

𝜏𝑡ℎ𝑒𝑜 = 

 

 

 

 

 

 

 

 

4. From your printed plot of the potential difference across the discharging capacitor as a function 

of time, at what time does the potential difference equal 37% of 𝑉𝑚𝑎𝑥?  How does this compare 

to the time constant of the circuit from your curve fit and from the calculation.  Explain your 

result. 

 

 

 

 

 



Activity 3:  Dependance of the time constant 𝜏 on 𝑅 for a fixed 𝐶? 

 

1. From your plot of the time constant, 𝜏, as a function of the circuit resistance 𝑅, what is the 

equation of the fit?  Print out your plot and attach it to this report or insert it into the space 

below. 

 

𝜏 = 𝐴𝑅𝑛 = 

 

 

What does the constant of proportionality 𝐴 equate to in the equation?  Calculate a percent 

difference.  

 

 

 

 

 

 

What is the exponent of 𝑅, 𝑛, and what is it supposed to be according to theory?  Calculate a 

percent difference. 

 

 

 

 

 

Activity 4:  Dependance of the time constant 𝜏 on 𝐶 for a fixed 𝑅? 

 

1. From your plot of the time constant, 𝜏, as a function of the circuit capacitance 𝐶, what is the 

equation of the fit?  Print out your plot and attach it to this report or insert it into the space 

below. 

 

𝜏 = 𝐵𝐶𝑚 = 

 

 

What does the constant of proportionality 𝐵 equate to in the equation?  Calculate a percent 

difference.  

 

 

 

 

 

What is the exponent of 𝑅, 𝑚, and what is it supposed to be according to theory?  Calculate a 

percent difference. 

 

 

 

 



2. In constructing the plot of 𝜏 versus 𝐶, we assumed that 𝐶1&2,𝑠𝑒𝑟𝑖𝑒𝑠 = 6000𝜇𝐹 = 0.006𝐹. Is 

this a valid assumption?  To show that it is valid or is not valid, apply conservation of energy 

and charge to two capacitors and wired in series and show that the effective capacitance is 

given by 
1

𝐶𝑒𝑞
= ∑

1

𝐶𝑖

𝑁
𝑖=1 .  Calculate the value of the capacitance for capacitors 𝐶1 and 𝐶2 wired 

in series. 

 

 

 

 

 

 

 

 

 

 

 

 

3.  In constructing the plot, we assumed that 𝐶1&2,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 25000𝜇𝐹 = 0.025𝐹.  Is this a valid 

assumption?  To show that it is valid or is not valid, apply conservation of energy and charge 

to two capacitors and wired in parallel and show that the effective capacitance is given by 

𝐶𝑒𝑞 = ∑ 𝐶𝑖
𝑁
𝑖=1 .  Calculate the value of the capacitance for capacitors 𝐶1 and 𝐶2 wired in 

parallel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


