Name \qquad
Physics 111 Quiz \#1, September 19, 2014
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Two negative charges, each with magnitude $3 \mu C$ are placed along the x-axis as shown in the diagram below. The two charges are spaced by a distance of 1 m .

1. What is the net electric field the point P located at $(x, y)=(0.5,-0.5) m$ shown on the diagram?

By the symmetry in the problem the horizontal component of the net electric field vanishes. Thus the net electric field points in the positive y-direction with a magnitude given by:
$E_{\text {net }}=E_{\text {net, },}=2 \frac{k Q}{r^{2}} \sin \theta=\frac{2 \times 9 \times 10^{9} \frac{N m^{2}}{\mathrm{C}^{2}} \times 3 \times 10^{-6} C}{(0.707 \mathrm{~m})^{2}}\left[\frac{0.5 \mathrm{~m}}{0.7 \mathrm{~m}}\right]=7.64 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}}$. The distance
between the point and the charge is given by $r=\sqrt{x^{2}+y^{2}}=\sqrt{(0.5 m)^{2}+(0.5 m)^{2}}=0.707 \mathrm{~m}$
2. What is the electric potential at point P ?

The electric potential at point P is given by the sum of the potentials due to each charge. Thus
$V_{P}=-2 \frac{k Q}{r}=-\frac{2 \times 9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \times 3 \times 10^{-6} \mathrm{C}}{0.707 \mathrm{~m}}=-7.64 \times 10^{4} \mathrm{~V}$
3. If a charge of $q=3 \mu C$ were placed at point P, what is the net force on this charge?

The electric force is in the positive y-direction and has a magnitude given by
$F_{n e t}=q E_{n e t}=3 \times 10^{-6} C \times 7.64 \times 10^{4} \frac{N}{C}=0.229 \mathrm{~N}$
4. How much work would it take to move the $q=3 \mu C$ charge from very far away and place it at rest at point P ?

The work done is $W=-q \Delta V=-\left(3 \times 10^{-6} C\right) \times\left[-7.64 \times 10^{4} V-0 V\right]=0.229 J$
5. If the $q=3 \mu C$ charge were released from rest at point P, its subsequent motion would most likely be
a. to move along the y-axis toward positive infinity.
b. to move along the y-axis towards negative infinity.
c. to move along the y-axis towards the origin and stop at the origin.
d. to move towards one of the two charges on the x -axis but which one would not be known.
e. to oscillate about the x -axis.

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$
\begin{aligned}
& \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} \\
& \vec{E}=\frac{\vec{F}}{q} \\
& \vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r} \\
& P E=k \frac{Q_{1} Q_{2}}{r} \\
& V(r)=k \frac{Q}{r} \\
& E_{x}=-\frac{\Delta V}{\Delta x} \\
& W_{f, i}=-q \Delta V_{f, i}
\end{aligned}
$$

Magnetic Forces and Fields
$F=q v B \sin \theta$
$F=I l B \sin \theta$
$\tau=N I A B \sin \theta=\mu B \sin \theta$
$P E=-\mu B \cos \theta$
$B=\frac{\mu_{0} I}{2 \pi r}$
$\varepsilon_{\text {induced }}=-N \frac{\Delta \phi_{B}}{\Delta t}=-N \frac{\Delta(B A \cos \theta)}{\Delta t}$
Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{N m^{2}}{C^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{A}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{Js}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{c^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

Electric Circuits

$$
\begin{aligned}
& I=\frac{\Delta Q}{\Delta t} \\
& V=I R=I\left(\frac{\rho L}{A}\right) \\
& R_{\text {series }}=\sum_{i=1}^{N} R_{i} \\
& \frac{1}{R_{\text {parallel }}}=\sum_{i=1}^{N} \frac{1}{R_{i}} \\
& P=I V=I^{2} R=\frac{V^{2}}{R} \\
& Q=C V=\left(\frac{\kappa \varepsilon_{0} A}{d}\right) V=\left(\kappa C_{0}\right) V \\
& P E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C} \\
& Q_{\text {charge }}(t)=Q_{\max }\left(1-e^{-\frac{t}{R C}}\right) \\
& Q_{\text {discharge }}(t)=Q_{\max } e^{-\frac{t}{R C}} \\
& C_{p a r a l l e l}=\sum_{i=1}^{N} C_{i} \\
& \frac{1}{C_{\text {series }}}=\sum_{i=1}^{N} \frac{1}{C_{i}}
\end{aligned}
$$

Light as a Particle \& Relativity

$$
\begin{aligned}
& E=h f=\frac{h c}{\lambda}=p c \\
& K E_{\max }=h f-\phi=e V_{\text {stop }} \\
& \Delta \lambda=\frac{h}{m_{e} c}(1-\cos \phi) \\
& \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& p=\gamma m v \\
& E_{\text {total }}=K E+E_{r e s t}=\gamma m c^{2} \\
& E_{\text {total }}^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& E_{\text {rest }}=m c^{2}
\end{aligned}
$$

$$
K E=(\gamma-1) m c^{2}
$$

Geometry
Circles: $\quad C=2 \pi r=\pi D \quad A=\pi r^{2}$
Triangles: $\quad A=\frac{1}{2} b h$
Spheres: $A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$

Light as a Wave

$$
\begin{aligned}
& c=f \lambda=\frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}} \\
& S(t)=\frac{\text { energ } y}{\text { time } \times \text { area }}=c \varepsilon_{o} E^{2}(t)=c \frac{B^{2}(t)}{\mu_{0}} \\
& I=S_{\text {avg }}=\frac{1}{2} c \varepsilon_{o} E_{\max }^{2}=c \frac{B_{\text {max }}^{2}}{2 \mu_{0}} \\
& P=\frac{S}{c}=\frac{\text { Force }}{\text { Area }} \\
& S=S_{o} \cos ^{2} \theta \\
& v=\frac{1}{\sqrt{\varepsilon \mu}}=\frac{c}{n} \\
& \theta_{\text {inc }}=\theta_{\text {refl }} \\
& n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
& \frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}} \\
& M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}} \\
& M_{\text {total }}=\prod_{i=1}^{N} M_{i} \\
& d \sin \theta=m \lambda \text { or }\left(m+\frac{1}{2}\right) \lambda \\
& a \sin \phi=m^{\prime} \lambda \\
& \text { Nuclear Physics } \\
& E_{\text {binding }}=\left(Z m_{p}+N m_{n}-m_{r e s t}\right) c^{2} \\
& \frac{\Delta N}{\Delta t}=-\lambda N_{o} \rightarrow N(t)=N_{o} e^{-\lambda t} \\
& A(t)=A_{o} e^{-\lambda t} \\
& m(t)=m_{o} e^{-\lambda t} \\
& t_{\frac{1}{2}}=\frac{\ln 2}{\lambda} \\
& \lambda
\end{aligned}
$$

Misc. Physics 110 Formulae
$\vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\Delta(m v)}{\Delta t}=m \vec{a}$
$\vec{F}=-k \vec{y}$
$\vec{F}_{C}=m \frac{v^{2}}{R} \hat{r}$
$W=\Delta K E=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=-\Delta P E$
$P E_{\text {gravity }}=m g y$
$P E_{\text {spring }}=\frac{1}{2} k y^{2}$

