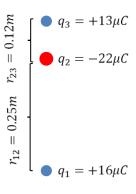
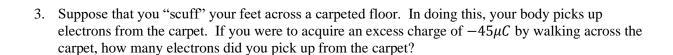
| Name |  |  |
|------|--|--|
|      |  |  |


Physics 111 Quiz #1, September 17, 2021

Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.


I affirm that I have carried out my academic endeavors with full academic honesty.

\_\_\_\_\_

1. Suppose that you have three point-charges in a line, with charges and separations shown on the right. What is the net electric force on point-charge  $q_2$  due to point-charges  $q_1$  and  $q_3$ ?



2. If the mass of point-charge  $q_2$  were  $1\mu g$ , what would be the magnitude and direction of the initial acceleration of  $q_2$ ?



4. Two point-charges of equal mass (m = 1g) are placed 0.2m apart. They are both charged so that each one has charge Q. In other words,  $q_1 = q_2 = Q$ . How much total charge was placed on both point-masses if the electric force between them was equal to the weight of either one near the Earth's surface?

# **Physics 111 Equation Sheet**

#### **Electric Forces, Fields and Potentials**

$$\vec{F} = k \frac{Q_1 Q_2}{r^2} \hat{r}$$

$$\vec{E} = \frac{\vec{F}}{q}$$

$$\vec{E}_Q = k \frac{Q}{r^2} \hat{r}$$

$$PE = k \frac{Q_1 Q_2}{r}$$

$$V(r) = k \frac{Q}{r}$$

$$E_x = -\frac{\Delta V}{\Delta x}$$

$$W = -q \Delta V_{f,i}$$

## **Magnetic Forces and Fields**

$$F = qvB \sin \theta$$

$$F = IIB \sin \theta$$

$$\tau = NIAB \sin \theta = \mu B \sin \theta$$

$$PE = -\mu B \cos \theta$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$\varepsilon_{induced} = -N \frac{\Delta \phi_B}{\Delta t} = -N \frac{\Delta (BA \cos \theta)}{\Delta t}$$

## Constants

$$g = 9.8 \frac{m}{2}$$

$$1e = 1.6 \times 10^{-19} C$$

$$k = \frac{1}{4\pi\varepsilon_o} = 9 \times 10^9 \, \frac{c^2}{Nm^2}$$

$$\varepsilon_{o} = 8.85 \times 10^{-12} \frac{Nm^{2}}{C^{2}}$$

$$1eV = 1.6 \times 10^{-19} J$$

$$\mu_o = 4\pi \times 10^{-7} \, \frac{Tm}{A}$$

$$c = 3 \times 10^8 \, \frac{m}{c}$$

$$h = 6.63 \times 10^{-34} \, Js$$

$$m_e = 9.11 \times 10^{-31} kg = \frac{0.511 MeV}{c^2}$$

$$m_p = 1.67 \times 10^{-27} kg = \frac{937.1 MeV}{c^2}$$

$$m_n = 1.69 \times 10^{-27} \, kg = \frac{948.3 MeV}{c^2}$$

$$1amu = 1.66 \times 10^{-27} kg = \frac{931.5 MeV}{r^2}$$

$$N_A = 6.02 \times 10^{23}$$

$$Ax^2 + Bx + C = 0 \rightarrow x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

#### **Electric Circuits**

$$\begin{split} I &= \frac{\Delta Q}{\Delta t} \\ V &= IR = I \left( \frac{\rho L}{A} \right) \\ R_{series} &= \sum_{i=1}^{N} R_{i} \\ \frac{1}{R_{parallel}} &= \sum_{i=1}^{N} \frac{1}{R_{i}} \\ P &= IV = I^{2}R = \frac{V^{2}}{R} \\ Q &= CV = \left( \frac{\kappa \varepsilon_{0} A}{d} \right) V = (\kappa C_{0}) V \\ PE &= \frac{1}{2} QV = \frac{1}{2} CV^{2} = \frac{Q^{2}}{2C} \\ Q_{\text{charge}}(t) &= Q_{\text{max}} \left( 1 - e^{-\frac{t}{RC}} \right) \\ Q_{\text{discharge}}(t) &= Q_{\text{max}} e^{-\frac{t}{RC}} \\ C_{parallel} &= \sum_{i=1}^{N} C_{i} \\ \frac{1}{C_{veries}} &= \sum_{i=1}^{N} \frac{1}{C_{i}} \end{split}$$

## Light as a Wave

$$c = f = \frac{1}{\sqrt{e_o m_o}}$$

$$S(t) = \frac{energy}{time ' area} = ce_o E^2(t) = c \frac{B^2(t)}{m_0}$$

$$I = S_{avg} = \frac{1}{2} ce_o E_{max}^2 = c \frac{B_{max}^2}{2m_0}$$

$$P = \frac{S}{c} = \frac{Force}{Area}$$

$$S = S_o \cos^2 q$$

$$v = \frac{1}{\sqrt{em}} = \frac{c}{n}$$

$$q_{inc} = q_{refl}$$

$$n_1 \sin q_1 = n_2 \sin q_2$$

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$$

$$M = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

$$M_{total} = O_{i=1}^{N} M_i$$

$$S_{out} = S_{in} e^{-\frac{A}{m_i} m_i x_i}$$

$$HU = \frac{m_w - m_m}{m_w}$$

## **Light as a Particle & Relativity**

$$E = hf = \frac{hc}{\lambda} = pc$$

$$KE_{\text{max}} = hf - \phi = eV_{\text{stop}}$$

$$\Delta \lambda = \frac{h}{m_e c} (1 - \cos \phi)$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$p = \gamma mv$$

$$E_{\text{total}} = KE + E_{\text{rest}} = \gamma mc^2$$

$$E_{\text{total}}^2 = p^2 c^2 + m^2 c^4$$

#### **Nuclear Physics**

$$E_{binding} = (Zm_p + Nm_n - m_{rest})c^2$$

$$\frac{\Delta N}{\Delta t} = -\lambda N_o \to N(t) = N_o e^{-\lambda t}$$

$$A(t) = A_o e^{-\lambda t}$$

$$m(t) = m_o e^{-\lambda t}$$

$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

Geometry

$$G \ rcl \ es \ C = 2\pi r = \pi D$$
 $A = \pi r^2$ 
 $Tri \ angl \ es \ A = \frac{1}{2}bh$ 
 $Spheres: \ A = 4\pi r^2$ 
 $V = \frac{4}{3}\pi r^3$ 

 $E_{rest} = mc^2$ 

 $KE = (\gamma - 1)mc^2$ 

### Misc. Physics 110 Formulae

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{\Delta (mv)}{\Delta t} = m\vec{a}$$

$$\vec{F} = -k\vec{y}$$

$$\vec{F}_C = m\frac{v^2}{R}\hat{r}$$

$$W = \Delta KE = \frac{1}{2}m(v_f^2 - v_i^2) = -\Delta PE$$

$$PE_{gravity} = mgy$$

$$PE_{spring} = \frac{1}{2}ky^2$$

$$|\vec{A}| = \sqrt{A_x^2 + A_y^2}$$

$$\phi = \tan^{-1}\left(\frac{A_y}{A_x}\right)$$

$$\vec{v}_f = \vec{v}_i + \vec{a}t$$

$$v_f^2 = v_i^2 + 2a\Delta x$$

$$\vec{x}_f = \vec{x}_i + \vec{v}_f t + \frac{1}{2}\vec{a}t^2$$