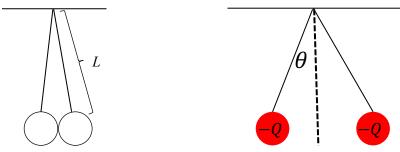

Name	;

Physics 111 Quiz #1, January 15, 2021


Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. Suppose that you have three point-charges in a line with $q_1 = +Q$, $q_2 = -2Q$, and $q_3 = +Q$ with the separation between successive charges r. What is the net electric force on point-charge q_3 due to point-charges q_1 and q_2 in terms of Q and r?

Suppose instead that you have two initially uncharged point-spheres each with mass m=0.2kg. The point-spheres are suspended from insulating strings of length L=1m. The point-spheres are charged until they both acquire charge -Q. The point-spheres repel each other and come into equilibrium when they each make an angle of $\theta=10^0$ measured with resect to the vertical. As these are point-spheres assume the initial angle each makes with respect to the vertical is 0^0 and thus both are initially hanging vertically.

2. What is the equilibrium separation between the centers of the charged spheres when they come to rest?

3.	What is the magnitude of the tension force in one of the strings?
4.	How much total charge was placed on both of the spheres?
5.	Which of the following statements would be true if the ropes holding the charged spheres were suddenly shortened to $\frac{L}{2}$ from L ?
	a. Both Q and F_e would decrease.
	b. Both Q and F_e would increase.
	c. Both r and F_e would decrease.
	d. Both r and F_e would increase.
	e. None of the above choices are correct.

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$\vec{F} = k \frac{Q_1 Q_2}{r^2} \hat{r}$$

$$\vec{E} = \frac{\vec{F}}{q}$$

$$\vec{E}_Q = k \frac{Q}{r^2} \hat{r}$$

$$PE = k \frac{Q_1 Q_2}{r}$$

$$V(r) = k \frac{Q}{r}$$

$$E_x = -\frac{\Delta V}{\Delta x}$$

$$W = -q \Delta V_{f,i}$$

Magnetic Forces and Fields

$$F = qvB \sin\theta$$

$$F = IlB \sin\theta$$

$$\tau = NIAB \sin\theta = \mu B \sin\theta$$

$$PE = -\mu B \cos\theta$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$\varepsilon_{induced} = -N \frac{\Delta \phi_B}{\Delta t} = -N \frac{\Delta (BA \cos \theta)}{\Delta t}$$

Constants

$$g = 9.8 \frac{m}{2}$$

$$1e = 1.6 \times 10^{-19} C$$

$$k = \frac{1}{4\pi\varepsilon_o} = 9 \times 10^9 \, \frac{C^2}{Nm^2}$$

$$\varepsilon_{0} = 8.85 \times 10^{-12} \frac{Nm^{2}}{C^{2}}$$

$$1eV = 1.6 \times 10^{-19} J$$

$$\mu_o = 4\pi \times 10^{-7} \, \frac{Tm}{4}$$

$$c = 3 \times 10^8 \frac{m}{4}$$

$$h = 6.63 \times 10^{-34} Js$$

$$m_e = 9.11 \times 10^{-31} kg = \frac{0.511 MeV}{c^2}$$

$$m_p = 1.67 \times 10^{-27} kg = \frac{937.1 MeV}{c^2}$$

$$m_n = 1.69 \times 10^{-27} kg = \frac{948.3 MeV}{c^2}$$

$$1amu = 1.66 \times 10^{-27} kg = \frac{931.5 MeV}{r^2}$$

$$N_4 = 6.02 \times 10^{23}$$

$$Ax^{2} + Bx + C = 0 \rightarrow x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

Electric Circuits

$$I = \frac{\Delta Q}{\Delta t}$$

$$V = IR = I \left(\frac{\rho L}{A}\right)$$

$$R_{series} = \sum_{i=1}^{N} R_{i}$$

$$\frac{1}{R_{parallel}} = \sum_{i=1}^{N} \frac{1}{R_{i}}$$

$$P = IV = I^{2}R = \frac{V^{2}}{R}$$

$$Q = CV = \left(\frac{\kappa \varepsilon_{0} A}{d}\right)V = (\kappa C_{0})V$$

$$PE = \frac{1}{2}QV = \frac{1}{2}CV^{2} = \frac{Q^{2}}{2C}$$

$$Q_{charge}(t) = Q_{max}\left(1 - e^{-\frac{t}{RC}}\right)$$

$$Q_{discharge}(t) = Q_{max}e^{-\frac{t}{RC}}$$

$$C_{parallel} = \sum_{i=1}^{N} C_{i}$$

$$\frac{1}{C} = \sum_{i=1}^{N} \frac{1}{C}$$

Light as a Wave

$$c = f\lambda = \frac{1}{\sqrt{\varepsilon_o \mu_o}}$$

$$S(t) = \frac{energy}{time \times area} = c\varepsilon_o E^2(t) = c\frac{B^2(t)}{\mu_0}$$

$$I = S_{avg} = \frac{1}{2}c\varepsilon_o E_{max}^2 = c\frac{B_{max}^2}{2\mu_0}$$

$$P = \frac{S}{c} = \frac{Force}{Area}$$

$$S = S_o \cos^2 \theta$$

$$v = \frac{1}{\sqrt{\varepsilon\mu}} = \frac{c}{n}$$

$$\theta_{inc} = \theta_{refl}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$$

$$M = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

$$M_{total} = \prod_{i=1}^{N} M_i$$

$$S_{out} = S_{in} e^{-\sum_i \mu_i x_i}$$

$$HU = \frac{\mu_w - \mu_m}{\mu_w}$$

Light as a Particle & Relativity

$$E = hf = \frac{hc}{\lambda} = pc$$

$$KE_{\text{max}} = hf - \phi = eV_{\text{stop}}$$

$$\Delta\lambda = \frac{h}{m_e c} (1 - \cos\phi)$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$p = \gamma mv$$

$$E_{\text{total}} = KE + E_{\text{rest}} = \gamma mc^2$$

$$E_{\text{total}}^2 = p^2 c^2 + m^2 c^4$$

$$E_{\text{rest}} = mc^2$$

Geometry

Circles:
$$C = 2\pi r = \pi D$$
 $A = \pi r^2$
Triangles: $A = \frac{1}{2}bh$
Spheres: $A = 4\pi r^2$ $V = \frac{4}{3}\pi r^3$

 $KE = (\gamma - 1)mc^2$

Nuclear Physics

$$\begin{split} E_{binding} &= \left(Zm_p + Nm_n - m_{rest}\right)c^2 \\ \frac{\Delta N}{\Delta t} &= -\lambda N_o \rightarrow N(t) = N_o e^{-\lambda t} \\ A(t) &= A_o e^{-\lambda t} \\ m(t) &= m_o e^{-\lambda t} \\ t_{\frac{1}{2}} &= \frac{\ln 2}{\lambda} \end{split}$$

Misc. Physics 110 Formulae

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{\Delta (mv)}{\Delta t} = m\vec{a}$$

$$\vec{F} = -k\vec{y}$$

$$\vec{F}_C = m\frac{v^2}{R}\hat{r}$$

$$W = \Delta KE = \frac{1}{2}m(v_f^2 - v_i^2) = -\Delta PE$$

$$PE_{gravity} = mgy$$

$$PE_{spring} = \frac{1}{2}ky^2$$

$$|\vec{A}| = \sqrt{A_x^2 + A_y^2}$$

$$\phi = \tan^{-1}\left(\frac{A_y}{A_x}\right)$$

$$\vec{v}_f = \vec{v}_i + \vec{a}t$$

$$v_f^2 = v_i^2 + 2a\Delta x$$

 $\vec{x}_{f} = \vec{x}_{i} + \vec{v}_{i}t + \frac{1}{2}\vec{a}t^{2}$