Name \qquad
Physics 111 Quiz \#2, October 2, 2015
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

You are given the circuit below in which a battery $V=12 \mathrm{~V}$ is connected to some resistors, where each resistor has a value $R=200 \Omega$. There is also a switch S wired in the circuit.

1. By what factor does the current increase or decreases when the switch S is open compared to when it's closed? That is, calculate the ratio of $I_{I_{\text {cosed }}} / I_{\text {open }}$ and state whether the current increases or decreases when the switch is closed.

Switch Open:
R_{3} and R_{4} are in parallel: $\frac{1}{R_{34}}=\frac{1}{R_{3}}+\frac{1}{R_{4}}=\frac{1}{200 \Omega}+\frac{1}{200 \Omega}=\frac{2}{200 \Omega} \rightarrow R_{34}=100 \Omega$
R_{1} and R_{34} are in series: $R_{e q}=R_{1}+R_{34}=200 \Omega+100 \Omega=300 \Omega$
The current produced: $I_{\text {open }}=\frac{V}{R_{e q}}=\frac{12 \mathrm{~V}}{300 \Omega}=0.04 \mathrm{~A}=40 \mathrm{~mA}$
Switch Closed:
R_{2}, R_{3} and R_{4} are in parallel: $\frac{1}{R_{234}}=\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}=\frac{3}{200 \Omega} \rightarrow R_{234}=66.7 \Omega$
R_{1} and R_{34} are in series: $R_{e q}=R_{1}+R_{234}=200 \Omega+66.7 \Omega=266.7 \Omega$
The current produced: $I_{\text {closed }}=\frac{V}{R_{e q}}=\frac{12 \mathrm{~V}}{266.7 \Omega}=0.045 \mathrm{~A}=45 \mathrm{~mA}$.
The ratio $\frac{I_{\text {closed }}}{I_{\text {open }}}=\frac{45 \mathrm{~mA}}{40 \mathrm{~mA}}=1.1$ and the current increases.
2. When the switch S is closed (compared to when the switch S is open) what happens to the potential difference across R_{4} ?
a. The potential difference across R_{4} increases.
b. The potential difference across R_{4} decreases.
c. The potential difference across R_{4} stays the same.
d. The potential difference across R_{4} is unable to be determined.
3. Suppose that each resistor is rated at $\frac{1}{2} W$. What is the maximum size battery you could use to power the circuit when the switch S is closed?

The needed power produced by the battery is the sum of all the powers of all the resistors.

$$
P=\sum_{i} P_{i}=4\left(\frac{1}{2} W\right)=2 W
$$

Since we know the equivalent resistance we can determine the current that the battery needs to produce. We have:

$$
P=I_{\text {total }}^{2} R_{\text {eq }} \rightarrow I_{\text {total }}=\sqrt{\frac{P}{R_{e q}}}=\sqrt{\frac{2 W}{266.7 \Omega}}=0.087 \mathrm{~A}
$$

The maximum potential is given from $P=I_{\text {total }} V \rightarrow V=\frac{P}{I_{\text {total }}}=\frac{2 \mathrm{~W}}{0.087 \mathrm{~A}}=23.1 \mathrm{~V}$.

Electric Forces, Fields and Potentials

$$
\begin{aligned}
& \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} \\
& \vec{E}=\frac{\vec{F}}{q} \\
& \vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r} \\
& P E=k \frac{Q_{1} Q_{2}}{r} \\
& V(r)=k \frac{Q}{r} \\
& E_{x}=-\frac{\Delta V}{\Delta x} \\
& W=-q \Delta V_{f, i}
\end{aligned}
$$

Magnetic Forces and Fields
$\begin{aligned} & F=q v B \sin \theta \\ & F=I l B \sin \theta \\ & \tau=N I A B \sin \theta=\mu B \sin \theta \\ & P E=-\mu B \cos \theta \\ & B=\frac{\mu_{0} I}{2 \pi r} \\ & \varepsilon_{\text {induced }}=-N \frac{\Delta \phi_{B}}{\Delta t}=-N \frac{\Delta(B A \cos \theta)}{\Delta t}\end{aligned}$ Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm} m^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{N m^{2}}{\mathrm{C}^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{T_{m}}{A}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{Js}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{c^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

Electric Circuits

$$
\begin{aligned}
& I=\frac{\Delta Q}{\Delta t} \\
& V=I R=I\left(\frac{\rho L}{A}\right) \\
& R_{\text {series }}=\sum_{i=1}^{N} R_{i} \\
& \frac{1}{R_{\text {parallel }}}=\sum_{i=1}^{N} \frac{1}{R_{i}} \\
& P=I V=I^{2} R=\frac{V^{2}}{R} \\
& Q=C V=\left(\frac{\kappa \varepsilon_{0} A}{d}\right) V=\left(\kappa C_{0}\right) V \\
& P E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C} \\
& Q_{\text {charge }}(t)=Q_{\max }\left(1-e^{-\frac{t}{R C}}\right) \\
& Q_{\text {discharge }}(t)=Q_{\max } e^{-\frac{t}{R C}} \\
& C_{\text {parallel }}=\sum_{i=1}^{N} C_{i} \\
& \frac{1}{C_{\text {series }}}=\sum_{i=1}^{N} \frac{1}{C_{i}}
\end{aligned}
$$

Light as a Particle \& Relativity

$$
\begin{aligned}
& E=h f=\frac{h c}{\lambda}=p c \\
& K E_{\max }=h f-\phi=e V_{\text {stop }} \\
& \Delta \lambda=\frac{h}{m_{e} c}(1-\cos \phi) \\
& \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& p=\gamma m v \\
& E_{\text {total }}=K E+E_{\text {rest }}=\gamma m c^{2} \\
& E_{\text {total }}^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& E_{\text {rest }}=m c^{2} \\
& K E=(\gamma-1) m c^{2}
\end{aligned}
$$

Geometry

Circles: $\quad C=2 \pi r=\pi D \quad A=\pi r^{2}$
Triangles: $A=\frac{1}{2} b h$
Spheres: $A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$

Light as a Wave
$c=f \lambda=\frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}}$
$S(t)=\frac{\text { energy }}{\text { time } \times \text { area }}=c \varepsilon_{o} E^{2}(t)=c \frac{B^{2}(t)}{\mu_{0}}$
$I=S_{\text {avg }}=\frac{1}{2} c \varepsilon_{o} E_{\text {max }}^{2}=c \frac{B_{\text {max }}^{2}}{2 \mu_{0}}$
$P=\frac{S}{c}=\frac{\text { Force }}{\text { Area }}$
$S=S_{o} \cos ^{2} \theta$
$v=\frac{1}{\sqrt{\varepsilon \mu}}=\frac{c}{n}$
$\theta_{\text {inc }}=\theta_{\text {refl }}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}$
$M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}$
$M_{\text {total }}=\prod_{i=1}^{N} M_{i}$
$S_{\text {out }}=S_{\text {in }} e^{-\sum_{i} \mu_{x_{i}}}$
$H U=\frac{\mu_{w}-\mu_{m}}{\mu_{w}}$

Nuclear Physics
$E_{\text {binding }}=\left(Z m_{p}+N m_{n}-m_{r ब t}\right) c^{2}$
$\frac{\Delta N}{\Delta t}=-\lambda N_{o} \rightarrow N(t)=N_{o} e^{-\lambda t}$
$A(t)=A_{o} e^{-\lambda t}$
$m(t)=m_{o} e^{-\lambda t}$
$t_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$
Misc. Physics 110 Formulae
$\vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\Delta(m v)}{\Delta t}=m \vec{a}$
$\vec{F}=-k \vec{y}$
$\vec{F}_{C}=m \frac{v^{2}}{R} \hat{r}$
$W=\Delta K E=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=-\Delta P E$
$P E_{\text {gravity }}=m g y$
$P E_{\text {spring }}=\frac{1}{2} k y^{2}$
$|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}}$
$\phi=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$
$\vec{x}_{f}=\vec{x}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2}$

