Name \qquad
Physics 111 Quiz \#2, September 23, 2022
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. Consider the accelerator shown below in which two parallel metal plates have a potential difference of $\Delta V=-10 \mathrm{kV}$ across them. A proton (initially located at the lower plate) is accelerated from rest and emerges from the hole in the top plate with a vertical velocity. What is the speed of the proton when it leaves the hole in the upper plate?

$$
\begin{aligned}
& W=-q \Delta V=-\left(e \times \frac{1.6 \times 10^{-19} \mathrm{C}}{1 e}\right)(-10000 \mathrm{~V})=1.6 \times 10^{-15} \mathrm{~J} \\
& W=\Delta K=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m v_{f}^{2} \rightarrow v_{f}=\sqrt{\frac{2 W}{m}}=\sqrt{\frac{2 \times 1.6 \times 10^{-15} \mathrm{~J}}{1.67 \times 10^{-27} \mathrm{~kg}}}=1.38 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

2. Suppose the proton is then incident on a second set of plates shown below. The

$$
\Delta x=d=5 \mathrm{~cm}
$$ proton enters this set of plates at the left plate at the point $(x, y)=(0,0)$ and suppose that the proton strikes the right plate at a point $(x, y)=\left(d, \frac{L}{2}\right)$ above where it enters. How long does it take the proton to strike the right plate from the time it enters the field?

$y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2} \rightarrow \frac{L}{2}=v_{i y} t \rightarrow t=\frac{L}{2 v_{i y}}$
$t=\frac{0.30 \mathrm{~m}}{2 \times 1.38 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}}=1.1 \times 10^{-7} \mathrm{~S}$
3. What electric field, magnitude and direction, would be needed to achieve the scenario in question 2 ?

$$
\begin{aligned}
& x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \rightarrow d=\frac{1}{2} a_{x} t^{2} \rightarrow a=\frac{2 d}{t^{2}}=\frac{2 \times 0.05 \mathrm{~m}}{\left(1.1 \times 10^{-7} \mathrm{~s}\right)^{2}}=8.46 \times 10^{12} \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& F_{x}=m a_{x}=e E \rightarrow E=\frac{m a_{x}}{e}=\frac{1.67 \times 10^{-27} \mathrm{~kg} \times 8.46 \times 10^{12} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{1.6 \times 10^{-19} \mathrm{C}}=8.8 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \text { in the positive x-direction. }
\end{aligned}
$$

4. What potential difference was applied across the set of plates in question 2 ?

$$
E=-\frac{\Delta V}{\Delta x} \rightarrow \Delta V=-E \Delta x=-8.8 \times 10^{4} \frac{N}{c} \times 0.05 \mathrm{~m}=-4.4 \times 10^{3} \mathrm{~V}=-4.4 \mathrm{kV}
$$

5. What was the change in electric potential energy for the proton in part 2 in keV ?

$$
\Delta U_{e}=q \Delta V=e \times(-4.4 \mathrm{kV})=-4.4 \mathrm{keV}
$$

