Name \qquad
Physics 111 Quiz \#2, January 16, 2015
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Two charges are placed on the x -axis. Charge $q_{1}=-5 \mu C$ is located at $x=-0.5 m$ while charge $q_{2}=-10 \mu C$ is located at $x=2.0 \mathrm{~m}$.

1. At what location between the charges q_{1} and q_{2} would a third charge $q_{3}=+3 \mu C$ be placed so that the electric field at the origin vanishes?

The electric field of q_{1} points to the left at the origin while q_{2} produces an electric field that points to the right. Assume for the moment that the charge q_{3} will be located to the right of the origin but to the left of charge q_{2}. Thus we have
$E_{-10}-E_{-5}+E_{3}=0$
$k\left[\frac{10 \mu C}{(2 m)^{2}}-\frac{5 \mu C}{(0.5 m)^{2}}+\frac{3 \mu C}{r^{2}}\right]=0$
$\therefore 2.5 m^{-2}-20 m^{-2}+\frac{3}{r^{2}}=0 \rightarrow r=\sqrt{\frac{3}{17.5 m^{-2}}}=0.41 \mathrm{~m}$
2. Suppose now that a charge $q_{4}=1 \mu C$ is placed at the origin. What is the electric force on q_{4} ?

Since the electric field at the origin is zero, the electric force on q_{4} will also be zero.
3. What is the electric potential at the origin due to charges q_{1}, q_{2}, and q_{3} ? (Hint: If you cannot determine an answer to part a, use $x=0.5 \mathrm{~m}$ as the location that would q_{3} be placed.)

$$
\begin{aligned}
& V=V_{1}+V_{2}+V_{3}=k\left[\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}+\frac{q_{3}}{r_{3}}\right] \\
& V=9 \times 10^{9} \frac{\mathrm{Nm}}{\mathrm{C}^{2}}\left[-\frac{5 \times 10^{-6} \mathrm{C}}{2 \mathrm{~m}}-\frac{10 \times 10^{-6} \mathrm{C}}{0.5 \mathrm{~m}}+\frac{3 \times 10^{-6} \mathrm{C}}{0.41 \mathrm{~m}}\right]
\end{aligned}
$$

$V=-1.37 \times 10^{5} V$
4. If q_{4} were brought in from very far away and placed at the origin, how much work would have been done to place q_{4} ?

$$
W=-q \Delta V=-q\left[V_{f}-V_{i}\right]=-1 \times 10^{-6} C\left[-1.37 \times 10^{5} \mathrm{~V}-0 \mathrm{~V}\right]=0.137 \mathrm{~J}
$$

5. Suppose that at a point A in space, the potential is 200 V , while at another location, point B , the potential is 100 V . A proton is fired from point B toward point A . As the proton moves from point B towards point A
a. the proton's kinetic and potential energies will increase.
b. the proton's kinetic energy will decrease and its potential energy will increase.
c. the proton's kinetic energy will increase and its potential energy will decrease.
d. the proton's kinetic and potential energies will decrease.
e. the proton's kinetic and potential energies will remain constant.

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$
\begin{aligned}
& \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} \\
& \vec{E}=\frac{\vec{F}}{q} \\
& \vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r} \\
& P E=k \frac{Q_{1} Q_{2}}{r} \\
& V(r)=k \frac{Q}{r} \\
& E_{x}=-\frac{\Delta V}{\Delta x} \\
& W=-q \Delta V_{f, i}
\end{aligned}
$$

Magnetic Forces and Fields
$F=q v B \sin \theta$
$F=I l B \sin \theta$
$\tau=N I A B \sin \theta=\mu B \sin \theta$
$P E=-\mu B \cos \theta$
$B=\frac{\mu_{0} I}{2 \pi r}$
$\varepsilon_{\text {induced }}=-N \frac{\Delta \phi_{B}}{\Delta t}=-N \frac{\Delta(B A \cos \theta)}{\Delta t}$
Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm} n^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{~N} m^{2}}{\mathrm{C}^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{A}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{Js}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{c^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

Electric Circuits

$$
\begin{aligned}
& I=\frac{\Delta Q}{\Delta t} \\
& V=I R=I\left(\frac{\rho L}{A}\right) \\
& R_{\text {series }}=\sum_{i=1}^{N} R_{i} \\
& \frac{1}{R_{\text {parallel }}}=\sum_{i=1}^{N} \frac{1}{R_{i}} \\
& P=I V=I^{2} R=\frac{V^{2}}{R} \\
& Q=C V=\left(\frac{\kappa \varepsilon_{0} A}{d}\right) V=\left(\kappa C_{0}\right) V \\
& P E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C} \\
& Q_{\text {charge }}(t)=Q_{\max }\left(1-e^{-\frac{t}{R C}}\right) \\
& Q_{\text {discharge }}(t)=Q_{\max } e^{-\frac{t}{R C}} \\
& C_{p a r a l l e l}=\sum_{i=1}^{N} C_{i} \\
& \frac{1}{C_{\text {series }}}=\sum_{i=1}^{N} \frac{1}{C_{i}}
\end{aligned}
$$

Light as a Particle \& Relativity

$$
\begin{aligned}
& E=h f=\frac{h c}{\lambda}=p c \\
& K E_{\max }=h f-\phi=e V_{\text {stop }} \\
& \Delta \lambda=\frac{h}{m_{e} c}(1-\cos \phi) \\
& \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& p=\gamma m v \\
& E_{\text {total }}=K E+E_{r e s t}=\gamma m c^{2} \\
& E_{\text {total }}^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& E_{\text {rest }}=m c^{2}
\end{aligned}
$$

$$
K E=(\gamma-1) m c^{2}
$$

Geometry
Circles: $C=2 \pi r=\pi D \quad A=\pi r^{2}$
Triangles: $\quad A=\frac{1}{2} b h$
Spheres: $A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$

Light as a Wave
$c=f \lambda=\frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}}$
$S(t)=\frac{\text { energy }}{\text { time } \times \text { area }}=c \varepsilon_{o} E^{2}(t)=c \frac{B^{2}(t)}{\mu_{0}}$
$I=S_{\text {avg }}=\frac{1}{2} c \varepsilon_{o} E_{\max }^{2}=c \frac{B_{\text {max }}^{2}}{2 \mu_{0}}$
$P=\frac{S}{c}=\frac{\text { Force }}{\text { Area }}$
$S=S_{o} \cos ^{2} \theta$
$v=\frac{1}{\sqrt{\varepsilon \mu}}=\frac{c}{n}$
$\theta_{\text {inc }}=\theta_{\text {refl }}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}$
$M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}$
$M_{\text {total }}=\prod_{i=1}^{N} M_{i}$
$S_{\text {out }}=S_{\text {in }} e^{-\sum_{i} \mu_{r} x_{i}}$
$H U=\frac{\mu_{w}-\mu_{m}}{\mu_{w}}$

Nuclear Physics
$E_{\text {bind ing }}=\left(Z m_{p}+N m_{n}-m_{r ब t}\right) c^{2}$
$\frac{\Delta N}{\Delta t}=-\lambda N_{o} \rightarrow N(t)=N_{o} e^{-\lambda t}$
$A(t)=A_{0} e^{-\lambda t}$
$m(t)=m_{o} e^{-\lambda t}$
$t_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$

Misc. Physics 110 Formulae
$\vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\Delta(m v)}{\Delta t}=m \vec{a}$
$\vec{F}=-k \vec{y}$
$\vec{F}_{C}=m \frac{v^{2}}{R} \hat{r}$
$W=\Delta K E=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=-\Delta P E$
$P E_{\text {gravity }}=m g y$
$P E_{\text {spring }}=\frac{1}{2} k y^{2}$
$|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}}$
$\phi=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)$

